已知定點,過點F且與直線相切的動圓圓心為點M,記點M的軌跡為曲線E.
(1)求曲線E的方程;
(2)若點A的坐標為,與曲線E相交于B,C兩點,直線AB,AC分別交直線于點S,T.試判斷以線段ST為直徑的圓是否恒過兩個定點?若是,求這兩個定點的坐標;若不是,說明理由.
(1).(2)以線段為直徑的圓恒過兩個定點.
解析試題分析:(1)根據(jù)拋物線的定義可知,點的軌跡是以點為焦點, 為準線的拋物線.
可得曲線的方程為.
(2)設(shè)點的坐標分別為,依題意得,.
由消去得,
應(yīng)用韋達定理.
直線的斜率,
故直線的方程為.
令,得,
得到點的坐標為.點的坐標為.
得到.
設(shè)線段的中點坐標為,
而
.
故以線段為直徑的圓的方程為.
令,得,解得或.
確定得到以線段為直徑的圓恒過兩個定點.
(1)由題意, 點到點的距離等于它到直線的距離,
故點的軌跡是以點為焦點, 為準線的拋物線.
∴曲線的方程為. 4分
(2)設(shè)點的坐標分別為,依題意得,.
由消去得,
∴. 6分
直線的斜率,
故直線的方程為.
令,得,
∴點的坐標為.
同理可得點的坐標為
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的左右頂點分別為,離心率.
(1)求橢圓的方程;
(2)若點為曲線:上任一點(點不同于),直線與直線交于點,為線段的中點,試判斷直線與曲線的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的左右頂點分別為,離心率.
(1)求橢圓的方程;
(2)若點為曲線:上任一點(點不同于),直線與直線交于點,為線段的中點,試判斷直線與曲線的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,
第3小題滿分6分.
已知橢圓過點,兩焦點為、,是坐標原點,不經(jīng)過原點的直線與橢圓交于兩不同點、.
(1)求橢圓C的方程;
(2) 當時,求面積的最大值;
(3) 若直線、、的斜率依次成等比數(shù)列,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓的中心為原點O,長軸在x軸上,離心率,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,|AA′|=4.
(1)求該橢圓的標準方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.求△PP'Q的面積S的最大值,并寫出對應(yīng)的圓Q的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直角坐標系xOy中,已知圓心在第二象限、半徑為2的圓C與直線y=x相切于坐標原點O,橢圓+=1與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程.
(2)試探究圓C上是否存在異于原點的點Q,使Q到橢圓的右焦點F的距離等于線段OF的長,若存在,請求出Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(2013•湖北)如圖,已知橢圓C1與C2的中心在坐標原點O,長軸均為MN且在x軸上,短軸長分別為2m,2n(m>n),過原點且不與x軸重合的直線l與C1,C2的四個交點按縱坐標從大到小依次為A,B,C,D,記,△BDM和△ABN的面積分別為S1和S2.
(1)當直線l與y軸重合時,若S1=λS2,求λ的值;
(2)當λ變化時,是否存在與坐標軸不重合的直線l,使得S1=λS2?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,離心率為,右焦點到右頂點的距離為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在與橢圓交于兩點的直線:,使得成立?若存在,求出實數(shù)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)橢圓的中心和拋物線的頂點均為原點,、的焦點均在軸上,過的焦點F作直線,與交于A、B兩點,在、上各取兩個點,將其坐標記錄于下表中:
(1)求,的標準方程;
(2)若與交于C、D兩點,為的左焦點,求的最小值;
(3)點是上的兩點,且,求證:為定值;反之,當為此定值時,是否成立?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com