分析 (1)推導出AC⊥BD,AC⊥DD1,由此能證明AC⊥平面BB1D1D.
(2)四棱錐D1-ABCD的體積V=$\frac{1}{3}{S}_{正方形ABCD}×D{D}_{1}$,由此能求出結(jié)果.
解答 證明:(1)∵在四棱柱ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是正方形,
∴AC⊥BD,AC⊥DD1,
∵BD∩DD1=D,
∴AC⊥平面BB1D1D.
解:(2)∵D1D⊥平面ABCD,底面ABCD是正方形,
且AB=1,D1D=$\sqrt{2}$,
∴四棱錐D1-ABCD的體積V=$\frac{1}{3}{S}_{正方形ABCD}×D{D}_{1}$=$\frac{1}{3}×{1}^{2}×\sqrt{2}$=$\frac{\sqrt{2}}{3}$.
點評 本題考查線面垂直的證明,考查四棱錐體積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1]∪(2,+∞) | B. | (1,2) | C. | [1,2) | D. | (-∞,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0.952 | B. | 0.942 | C. | 0.954 | D. | 0.960 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $3\sqrt{3}$ | C. | $\frac{9}{2}$ | D. | $\frac{9}{2}\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com