1.如果實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≥1\\ x-y+1≤0\\ 2x-y-2≤0\end{array}\right.$則目標(biāo)函數(shù)z=3x-2y的最大值是1.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x≥1\\ x-y+1≤0\\ 2x-y-2≤0\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x-y+1=0}\\{2x-y-2=0}\end{array}\right.$,解得A(3,4).
化目標(biāo)函數(shù)z=3x-2y為y=$\frac{3}{2}x-\frac{z}{2}$,
由圖可知,當(dāng)直線y=$\frac{3}{2}x-\frac{z}{2}$過A時,直線在y軸上的截距最小,z有最大值為1.
故答案為:1.

點(diǎn)評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法與數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖中的程序框圖的算法思路來源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的”更相減損術(shù)“.執(zhí)行該程序框圖,若輸入a,b,i的值分別為6,8,0時,則輸出的i=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知橢圓$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1,直線mx+y+m-1=0,那么直線與橢圓位置關(guān)系( 。
A.相交B.相離C.相切D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知集合A={(x,y)|3x-y=7},集合B={(x,y)|2x+y=3},則A∩B={(2,-1)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=2x-\frac{a}{x}$,且f(1)=3
(1)求a的值;
(2)判斷函數(shù)的奇偶性;
(3)證明函數(shù)f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知定義在R上的函數(shù)f(x)滿足f(1-x)=f(1+x),且f(x)在[1,+∞)為遞增函數(shù),若不等式f(1-m)<f(m)成立,則m的取值范圍是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對應(yīng)值如下表,f(x)的導(dǎo)函數(shù) f′(x)的圖象如圖所示.
x-1045
f(x)1221
下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)f(x)的值域?yàn)閇1,2];
②函數(shù)f(x)在[0,2]上是減函數(shù);
③若x∈[-1,t]時,f(x)的最大值是2,則t的最大值為4;
④當(dāng)1<a<2時,函數(shù)y=f(x)-a有4個零點(diǎn)
其中是真命題的是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l:y=-x+3與橢圓C:mx2+ny2=1(n>m>0)有且只有一個公共點(diǎn)P(2,1).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若直線l′:y=-x+b交C于A,B兩點(diǎn),且PA⊥PB,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知圓O:x2+y2=4(O為坐標(biāo)原點(diǎn))經(jīng)過橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸端點(diǎn)和兩個焦點(diǎn),則橢圓C的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

同步練習(xí)冊答案