3.若方程x2+y2+2mx-2y+m2+5m=0表示圓,求:
(1)實(shí)數(shù)m的取值范圍;
(2)圓心坐標(biāo)和半徑.

分析 (1)利用圓的一般方程可得 D2+E2-4F>0,由此求得m的取值范圍.
(2)將圓的方程寫成標(biāo)準(zhǔn)方程的形式,可得圓心坐標(biāo)和半徑.

解答 解:(1)∵方程x2+y2+2mx-2y+m2+5m=0表示圓,
∴D2+E2-4F=(2m)2+(-2)2-4(m2+5m)>0,
即4m2+4-4m2-20m>0,解得m<$\frac{1}{5}$,
故m的取值范圍為(-∞,$\frac{1}{5}$).
(2)將方程x2+y2+2mx-2y+m2+5m=0寫成標(biāo)準(zhǔn)方程為(x+m)2+(y-1)2=1-5m,
可得圓心坐標(biāo)為(-m,1),半徑r=$\sqrt{1-5m}$.

點(diǎn)評(píng) 本題主要考查圓的一般方程,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.用數(shù)字1,2,3,4,5可以組成沒有重復(fù)數(shù)字,并且比20000大的五位偶數(shù)共有36個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)為( 。
A.140°B.130°C.120°D.110°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列各式中正確的個(gè)數(shù)是( 。
①(x7)′=7x6;    ②(x-1)′=x-2;      ③($\frac{1}{\sqrt{x}}$)′=-$\frac{1}{2}$x${\;}^{-\frac{3}{2}}$;     ④($\root{5}{{x}^{2}}$)′=$\frac{2}{5}$x${\;}^{-\frac{3}{5}}$;     ⑤(cosx)′=-sinx;
⑥(cos2)′=-sin2.
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a≤0).
(1)當(dāng)a=0時(shí),求f(x)在x=1處的切線方程;
(2)當(dāng)a<0時(shí),討論f(x)的單調(diào)性;
(3)若?a∈(-3,-2),x1,x2∈[1,3],有(m+ln3)a-2ln3>|f(x1)-f(x2)|,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.一質(zhì)點(diǎn)按規(guī)律s=2t3運(yùn)動(dòng),則其在時(shí)間段[1,2]內(nèi)的平均速度為14m/s,在t=1時(shí)的瞬時(shí)速度為6m/s.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某地為增強(qiáng)居民的傳統(tǒng)文化意識(shí),活躍節(jié)日氛圍,在元宵節(jié)舉辦了猜燈謎比賽,現(xiàn)從參加比賽的選手中隨機(jī)抽取200名后按年齡分組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45),得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取12名選手參加傳統(tǒng)知識(shí)問答比賽,則應(yīng)從第3,4,5組各抽取多少名選手?
(2)在(1)的條件下,該地決定在第4,5組的選手中隨機(jī)抽取2名選手介紹比賽感想,求第5組至少有一名選手被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)=x3-tx2+3x在區(qū)間[1,4]上單調(diào)遞增,則實(shí)數(shù)t的取值范圍是(  )
A.$(-∞,\frac{51}{8}]$B.(-∞,3]C.$[\frac{51}{8},+∞)$D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)$y=\sqrt{2x+1}+ln(3-4x)$的定義域?yàn)椋ā 。?table class="qanwser">A.$(-\frac{1}{2},\frac{3}{4})$B.$[-\frac{1}{2},\frac{3}{4}]$C.$(-∞,\frac{1}{2}]∪(\frac{3}{4},+∞)$D.$[-\frac{1}{2},\frac{3}{4})$

查看答案和解析>>

同步練習(xí)冊(cè)答案