13.函數(shù)$y=\sqrt{2x+1}+ln(3-4x)$的定義域為(  )
A.$(-\frac{1}{2},\frac{3}{4})$B.$[-\frac{1}{2},\frac{3}{4}]$C.$(-∞,\frac{1}{2}]∪(\frac{3}{4},+∞)$D.$[-\frac{1}{2},\frac{3}{4})$

分析 根據(jù)函數(shù)$y=\sqrt{2x+1}+ln(3-4x)$,列出使解析式有意義的不等式組,求出解集即可.

解答 解:函數(shù)$y=\sqrt{2x+1}+ln(3-4x)$,
∴$\left\{\begin{array}{l}{2x+1≥0}\\{3-4x>0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x≥-\frac{1}{2}}\\{x<\frac{3}{4}}\end{array}\right.$,
即-$\frac{1}{2}$≤x<$\frac{3}{4}$,
∴函數(shù)y的定義域為[-$\frac{1}{2}$,$\frac{3}{4}$).
故選:D.

點評 本題考查了求函數(shù)定義域的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若方程x2+y2+2mx-2y+m2+5m=0表示圓,求:
(1)實數(shù)m的取值范圍;
(2)圓心坐標(biāo)和半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax+b(a>0,且a≠1).若f(x)的圖象如圖所示,
(1)求a,b的值;
(2)記g(x)=f(x)-logax,判斷g(x)在定義域內(nèi)是否存在零點,若存在,請求出零點,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.計算:$\root{5}{2}$×(4${\;}^{-\frac{2}{5}}$)-1+lg$\sqrt{1000}$-sin270°=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.i表示虛數(shù)單位,則1+i+i2+…+i2005=1+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)=ax+b-1,若a,b都是從區(qū)間[0,2]上任取的一個數(shù),則f(2)<0成立的概率為$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.一個半徑為r的扇形,若它的周長等于它所在圓的周長的一半,則扇形所對圓心角的度數(shù)為(π-2)rad.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為研究質(zhì)量x(單位:g)對彈簧長度y(單位:cm)的影響,對不同質(zhì)量的6根彈簧進(jìn)行測量,得到如下數(shù)據(jù):
x (g)51015202530
y (cm)7.258.128.959.9010.911.8
(1)畫出散點圖;
(2)如果散點圖中的各點大致分布在一條直線的附近,求y與x之間的回歸方程.
( 其中        $\begin{array}{l}b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\\ a=\overline y-b\overline x\end{array}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{x-a}{{x}^{2}+1}$,g(x)=x3-kx,其中a,k∈R.
(1)若f(x)的一個極值點為$\frac{1}{2}$,求f(x)的單調(diào)區(qū)間與極小值;
(2)當(dāng)a=0時,?x1∈[0,2],x2∈[1,2],f(x1)≠g(x2),且g(x)在[1,2]上有極值,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案