A. | 140° | B. | 130° | C. | 120° | D. | 110° |
分析 作A關于BC和CD的對稱點A′,A″,連接A′A″,交BC于M,交CD于N,則A′A″即為△AMN的周長最小值.由此能求出△AMN周長最小時,則∠AMN+∠ANM的度數(shù).
解答 解:如下圖,作A關于BC和CD的對稱點A′,A″,
連接A′A″,交BC于M,交CD于N,
則A′A″即為△AMN的周長最小值.
作DA延長線AH,
∵∠DAB=120°,∴∠HAA′=60°,
∴∠AA′M+∠A″=∠HAA′=60°,
∵∠MA′A=∠MAA′,∠NAD=∠A″,
且∠MA′A+∠MAA′=∠AMN,
∠NAD+∠A″=∠ANM,
∴∠AMN+∠ANM
=∠MA′A+∠MAA′+∠NAD+∠A″
=2(∠AA′M+∠A″)=2×60°=120°.
故選:C.
點評 本題考查兩角度數(shù)和的求法,考查三角形性質(zhì)的應用,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{26}}}{13}$ | B. | $\frac{{\sqrt{26}}}{26}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com