15.已知角$θ∈(\frac{3π}{4},π)$且$sinθcosθ=-\frac{{\sqrt{3}}}{2}$,則 cosθ-sinθ的值為( 。
A.-$\sqrt{1+\sqrt{3}}$B.$\frac{{1+\sqrt{3}}}{2}$C.$\frac{{2+\sqrt{3}}}{2}$D.±$\frac{{1+\sqrt{3}}}{2}$

分析 由題意可得θ為鈍角,根據(jù)cosθ-sinθ=-$\sqrt{{(cosθ-sinθ)}^{2}}$,計(jì)算求得結(jié)果.

解答 解:∵角$θ∈(\frac{3π}{4},π)$且$sinθcosθ=-\frac{{\sqrt{3}}}{2}$,∴θ為鈍角,
則 cosθ-sinθ=-$\sqrt{{(cosθ-sinθ)}^{2}}$=-$\sqrt{1-2sinθcosθ}$=-$\sqrt{1+\sqrt{3}}$,
故選:A.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=|x+m|+|2x+1|.
(Ⅰ)當(dāng)m=-1,解不等式f(x)≤3;
(Ⅱ)求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在正方體ABCD-A1B1C1D1中,M、N分別是棱BC、CC1的中點(diǎn).
( 1 )求證:MN∥面AB1D1;
(文科)(2)若正方體邊長(zhǎng)為2,求三棱錐${\;}_{{A}_{1}-{B}_{1}A{D}_{1}}$的體積.
(理科)(2)求二面角D-MN-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.a(chǎn)=-6是直線(xiàn)l1:ax+(1-a)y-3=0和直線(xiàn)l2:(a-1)x+2(a+3)y-2=0垂直的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.不充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知直線(xiàn)l的方程為2x+my-4m-4=0,m∈R,點(diǎn)P的坐標(biāo)為(-1,0).
(1)求證:直線(xiàn)l恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)Q為直線(xiàn)l上的動(dòng)點(diǎn),且PQ⊥l,求|PQ|的最大值;
(3)設(shè)點(diǎn)P在直線(xiàn)l上的射影為點(diǎn)A,點(diǎn)B的坐標(biāo)為($\frac{9}{2}$,5),求線(xiàn)段AB長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.?dāng)?shù)列{an}的通項(xiàng)公式為an=-n2+9n,則該數(shù)列第4或5項(xiàng)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.將函數(shù)f(x)=$\sqrt{x}$中的自變量x用x=g(t)替換,替換后所得的函數(shù)F(t)=$\sqrt{g(t)}$與原函數(shù)f(x)的值域相同,則函數(shù)g(t)可以是下列函數(shù)中的①③④(請(qǐng)?zhí)顚?xiě)所有滿(mǎn)足條件的g(t)的編號(hào)).
①g(t)=t${\;}^{\frac{1}{2}}$;②g(t)=2t;③g(t)=3t-5;④g(t)=($\frac{1}{2}$)t-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.矩陣的一種運(yùn)算$({\begin{array}{l}a&b\\ c&d\end{array}})({\begin{array}{l}x\\ y\end{array}})=({\begin{array}{l}{ax+by}\\{cx+dy}\end{array}})$,該運(yùn)算的幾何意義為平面上的點(diǎn)(x,y)在矩陣$({\begin{array}{l}a&b\\ c&d\end{array}})$的作用下變換成點(diǎn)(ax+by,cx+dy),若曲線(xiàn)x2+4xy+2y2=1在矩陣$({\begin{array}{l}1&a\\ b&1\end{array}})$的作用下變換成曲線(xiàn)x2-2y2=1,則ab=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某工廠組織工人技能培訓(xùn),其中甲、乙兩名技工在培訓(xùn)時(shí)進(jìn)行的5次技能測(cè)試中的成績(jī)?nèi)鐖D莖葉圖所示.
(1)現(xiàn)要從中選派一人參加技能大賽,從這兩名技工的測(cè)試成績(jī)分析,派誰(shuí)參加更合適;
(2)若將頻率視為概率,對(duì)選派參加技能大賽的技工在今后三次技能大賽的成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)中高于85分的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案