設(shè)等差數(shù)列的前項和為.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和,并求的最小值.

(1);(2)當(dāng)時,最小,最小值為.

解析試題分析:(1)設(shè)等差數(shù)列的公差為,進(jìn)而根據(jù)條件列出方程組,從中求解得到,進(jìn)而可以寫出數(shù)列的通項公式;(2)由(1)中結(jié)論可得,法一:進(jìn)而根據(jù)等差數(shù)列的通項公式求出該數(shù)列的前項和,再由二次函數(shù)的圖像與性質(zhì)即可求得的最小值;法二:也可以由得出該數(shù)列從首項開始到哪一項都是非正常,所有這些非正數(shù)相加,當(dāng)然是達(dá)到的最小值.
(1)設(shè)等差數(shù)列的公差為,由已知可得,解得,所以
(2)法一:由(1)可得,則由等差數(shù)列的前項和公式可得
因為為整數(shù),根據(jù)二次函數(shù)的圖像與性質(zhì)可知:當(dāng)時,最小,最小值為
法二:由(1)可得,所以該數(shù)列是單調(diào)遞增數(shù)列,令,解得所以當(dāng)時,最小,最小值為.
考點:1.等差數(shù)列的通項公式及其前項和;2.二次函數(shù)的圖像與性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)函數(shù)的零點從小到大排列,記為數(shù)列,求的前項和;
(2)若上恒成立,求實數(shù)的取值范圍;
(3)設(shè)點是函數(shù)圖象的交點,若直線同時與函數(shù),的圖象相切于點,且
函數(shù)的圖象位于直線的兩側(cè),則稱直線為函數(shù)的分切線.
探究:是否存在實數(shù),使得函數(shù)存在分切線?若存在,求出實數(shù)的值,并寫出分切線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
在等比數(shù)列中,.
(1)求
(2)設(shè),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{}的前項和為,且滿足,
(1)求證:{}是等差數(shù)列;
(2)求表達(dá)式;
(3)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項均不相等的等差數(shù)列{an}的前n項和為Sn,若S3=15,且a3+1為a1+1和a7+1的等比中項.
(1)求數(shù)列{an}的通項公式與前n項和Sn
(2)設(shè)Tn為數(shù)列{}的前n項和,問是否存在常數(shù)m,使Tn=m[],若存在,求m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的前項和滿足,
(1)求的通項公式;
(2)求的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列中,。
(1) 求數(shù)列的通項公式;(2) 令,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

的三個內(nèi)角成等差數(shù)列,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項均為正數(shù)的等比數(shù)列中,
(1)求公比;
(2)若分別為等差數(shù)列的第3項和第5項,求數(shù)列的通項公式.

查看答案和解析>>

同步練習(xí)冊答案