13.已知在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是正方形,PA=AB=2,在該四棱錐內(nèi)部或表面任取一點O,則四棱錐O-ABCD的體積不小于$\frac{2}{3}$的概率為$\frac{1}{2}$.

分析 根據(jù)題意畫出圖形,結(jié)合圖形,利用對應的體積比值求出對應的概率.

解答 解:由題意,四棱錐的體積為$\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{4}{3}$,
∵四棱錐O-ABCD的體積不小于$\frac{2}{3}$,
∴O到平面ABCD的距離不小于1,
∴四棱錐O-ABCD的體積不小于$\frac{2}{3}$的概率為$\frac{1}{2}$.
故答案為$\frac{1}{2}$.

點評 本題考查了空間幾何體體積的計算問題,也考查了幾何概型的應用問題,是綜合性題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知f(x)是定義在R上的偶函數(shù),且$x≤0時,f(x)={log_{\frac{1}{3}}}({-x+1})$.
(1)求f(0),f(2);               
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若f(x)=x2+2x-5且A(1,-2),則以點A為切點的切線方程為4x-y-6=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)y=log2x在[1,2]上的值域是( 。
A.RB.[0,+∞)C.(-∞,1]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知${(x+\frac{1}{ax})^6}$展開式的常數(shù)項是160,則由曲線y=x2和y=xa圍成的封閉圖形的面積為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(sinωx,0)(ω>0),且函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$在[-$\frac{π}{6}$,0]上的最小值為$-\sqrt{3}$,將函數(shù)f(x)的圖象上所有的點向右平移φ(0<φ<$\frac{π}{2}$)個單位后,得到的函數(shù)g(x)的圖象,且已知函數(shù)g(x)的圖形關(guān)于直線x=$\frac{7π}{12}$對稱.
(1)求函數(shù)g(x)的解析式;
(2)在△ABC中,a,b,c分別為∠A,∠B,∠C對應的邊,若函數(shù)g(A)=0,a=5,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|x+1|,x<1}\\{-{x}^{2}+2x+1,x≥1}\end{array}\right.$,則函數(shù)g(x)=2|x|f(x)-2的零點個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在四棱錐S-ABCD中,AB∥CD,AB⊥AD,SA=AB=2CD=2,SB=2AD=2$\sqrt{2}$,平面SAB⊥平面ABCD,E為SB的中點
(1)求證:CE∥平面SAD;
(2)求證:BD⊥平面SAC;
(3)求直線CE與平面SAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在長方體ABCD-A1B1C1D1中,已知二面角A1-BD-A的大小為$\frac{π}{6}$,若空間一條直線l與直線CC1所成的角為$\frac{π}{4}$
,則直線l與平面A1BD所成的角的取值范圍是( 。
A.$[\frac{π}{12},\frac{5π}{12}]$B.$[\frac{π}{4},\frac{5π}{12}]$C.$[\frac{π}{12},\frac{π}{2})$D.$[\frac{π}{6},\frac{π}{4}]$

查看答案和解析>>

同步練習冊答案