14.將點(diǎn)的極坐標(biāo)(π,-2π)化為直角坐標(biāo)為(  )
A.(π,0)B.(π,2π)C.(-π,0)D.(-2π,0)

分析 利用x=ρcosθ,y=ρsinθ即可把極坐標(biāo)化為直角坐標(biāo).

解答 解:點(diǎn)的極坐標(biāo)(π,-2π)化為直角坐標(biāo)(πcos(-2π),πsin(-2π)),即(π,0).
故選:A.

點(diǎn)評(píng) 本題考查了極坐標(biāo)化為直角坐標(biāo)的方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知離散型隨機(jī)變量X服從二項(xiàng)分布X~B(n,p)且E(X)=12,D(X)=4,則n與p的值分別為(  )
A.$18,\frac{2}{3}$B.$18,\frac{1}{3}$C.$12,\frac{2}{3}$D.$12,\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.平面A1B1C1∥平面ABC,A1A⊥平面ABC,A1A∥B1B∥C1C,AB=BC=AC=AA1=4,求BC1與平面ABB1A1所成角的大。ㄒ笥脦缀魏拖蛄?jī)煞N方法計(jì)算,并有規(guī)范的計(jì)算過(guò)程)
幾何方法:arcsin$\frac{\sqrt{6}}{4}$
向量方法:arcsin$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在菱形ABCD中,A=60°,AB=$\sqrt{3}$,將△ABD折起到△PBD的位置,若三棱錐P-BCD的外接球的體積為$\frac{7\sqrt{7}π}{6}$,則二面角P-BD-C的正弦值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{7}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.語(yǔ)文成績(jī)服從正態(tài)分布N(100,17.52),數(shù)學(xué)成績(jī)的頻率分布直方圖如圖:
(1)如果成績(jī)大于135的為特別優(yōu)秀,這500名學(xué)生中本次考試語(yǔ)文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?
(2)如果語(yǔ)文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(1)中的這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有x人,求x的分布列和數(shù)學(xué)期望.
(3)根據(jù)以上數(shù)據(jù),是否有99%的把握認(rèn)為語(yǔ)文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.
①若x~N(μ,σ2),則P(μ-σ<x≤μ+σ)=0.68,P(μ-2σ<x≤μ+2σ)=0.96.
②k2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$;

P(k2≥k00.500.400.0100.0050.001
k00.4550.7086.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=(2-a)x+a-2(1+lnx)
(1)當(dāng)a=1時(shí),求曲線(xiàn)f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(2)若對(duì)任意x∈(0,$\frac{1}{2}$),f(x)>0恒成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知集合M={x|x2+3x=0},N={x|x2+2x-3=0},求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=(2-a)lnx+$\frac{2}{x}$+ax.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的極值;
(2)當(dāng)a<0時(shí),試求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,在x=0處的切線(xiàn)與直線(xiàn)3x+y=0平行.
(1)求f(x)的解析式;
(2)已知點(diǎn)A(2,m),求過(guò)點(diǎn)A的曲線(xiàn)y=f(x)的切線(xiàn)條數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案