【題目】設(shè)橢圓的上頂點(diǎn)為A,右頂點(diǎn)為B.已知O為原點(diǎn)).

1)求橢圓的離心率;

2)設(shè)點(diǎn),直線與橢圓交于兩個(gè)不同點(diǎn)M,N,直線AMx軸交于點(diǎn)E,直線ANx軸交于點(diǎn)F,若.求證:直線l經(jīng)過定點(diǎn).

【答案】1;(2)證明見解析.

【解析】

1)由,根據(jù),即可求出離心率(2)由結(jié)合(1)可求出橢圓方程,設(shè),得出點(diǎn)坐標(biāo),聯(lián)立與橢圓方程,根據(jù)韋達(dá)定理可得,,利用化簡可求m,可求出直線所過定點(diǎn).

1)設(shè)橢圓的半焦距為c,由已知有

又由,

消去b,

解得.

所以,橢圓的離心率為

2)由點(diǎn),又

所以

所以橢圓的方程為,

設(shè),,

則直線AM的方程為

,得點(diǎn)E的橫坐標(biāo),

所以點(diǎn),

同理,點(diǎn),

,

,,

所以

.

所以.

解得,此時(shí),

所以直線l經(jīng)過定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左右焦點(diǎn)、恰好是等軸雙曲線的左右頂點(diǎn),且橢圓的離心率為是雙曲線上異于頂點(diǎn)的任意一點(diǎn),直線與橢圓的交點(diǎn)分別記為、

1)求橢圓的方程;

2)設(shè)直線的斜率分別為、,求證:為定值;

3)若存在點(diǎn)滿足,試求的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,射線l(x≥0),曲線C1的參數(shù)方程為為參數(shù)),曲線C2的方程為;以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C3的極坐標(biāo)方程為

1)寫出射線l的極坐標(biāo)方程以及曲線C1的普通方程;

2)已知射線lC2交于OM,與C3交于O,N,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣畜牧技術(shù)員張三和李四9年來一直對(duì)該縣山羊養(yǎng)殖業(yè)的規(guī)模進(jìn)行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量y(單位:萬只)與相成年份x(序號(hào))的數(shù)據(jù)表和散點(diǎn)圖(如圖所示),根據(jù)散點(diǎn)圖,發(fā)現(xiàn)y與x有較強(qiáng)的線性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場的個(gè)數(shù)z(單位:個(gè))關(guān)于x的回歸方程.

(1)根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計(jì)量,求y關(guān)于x的線性回歸方程(參考統(tǒng)計(jì)量:);

(2)試估計(jì):①該縣第一年養(yǎng)殖山羊多少萬只?

②到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬元)對(duì)年銷售量(單位:噸)和年利潤(單位:萬元)的影響.對(duì)近六年的年宣傳費(fèi)和年銷售量)的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):

年份

年宣傳費(fèi)(萬元)

年銷售量(噸)

經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)(萬元)與年銷售量(噸)之間近似滿足關(guān)系式).對(duì)上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如表:

1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;

2)已知這種產(chǎn)品的年利潤的關(guān)系為若想在年達(dá)到年利潤最大,請(qǐng)預(yù)測年的宣傳費(fèi)用是多少萬元?

附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線中的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C (a>b>0)的離心率為,直線l1經(jīng)過橢圓的上頂點(diǎn)A和右頂點(diǎn)B,并且和圓x2y2相切.

(1)求橢圓C的方程;

(2)設(shè)直線 與橢圓C相交于MN兩點(diǎn),以線段OM、ON為鄰邊作平行四邊形OMPN,其中頂點(diǎn)P在橢圓C上,O為坐標(biāo)原點(diǎn),求|OP|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形ABCD中,AB=3,BC=4,E,F(xiàn)分別在線段BC,AD上,EF∥AB,將矩形ABEF沿EF折起,記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF.

(1)在線段BC是否存在一點(diǎn)E,使得ND⊥FC ,若存在,求出EC的長并證明;

若不存在,請(qǐng)說明理由.

(2)求四面體NEFD體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,為棱中點(diǎn),底面是邊長為2的正方形,為正三角形,平面與棱交于點(diǎn),平面與平面交于直線,且平面平面.

1)求證:

2)求四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】檳榔原產(chǎn)于馬來西亞,中國主要分布在云南、海南及臺(tái)灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實(shí)作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機(jī)構(gòu)列為致癌物清單Ⅰ類致癌物.云南某民族中學(xué)為了解兩個(gè)少數(shù)民族班學(xué)生咀嚼檳榔的情況,分別從這兩個(gè)班中隨機(jī)抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).

(1)從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過21的數(shù)據(jù)記為,求的概率;

(2)從所有咀嚼檳榔顆數(shù)在20顆以上(包含20顆)的同學(xué)中隨機(jī)抽取3人,求被抽到班同學(xué)人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案