A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | c<a<b |
分析 根據(jù)零點存在定理,分別求三個函數(shù)的零點,判斷零點的范圍,再判斷函數(shù)的單調性,確定函數(shù)的零點的唯一性,從而得到結果.
解答 解:函數(shù)f(x)=2x+x,f(-1)=$\frac{1}{2}$-1=-$\frac{1}{2}$<0,f(0)=1>0,可知函數(shù)的零點a<0;
令g(x)=x-3=0得,b=3;
函數(shù)h(x)=log2x+x=0,h($\frac{1}{2}$)=-1+$\frac{1}{2}$=-$\frac{1}{2}$<0,h(1)=1>0,
∴函數(shù)的零點滿足$\frac{1}{2}$<c<1,
∵f(x)=2x+x,g(x)=x-3,h(x)=log2x+x在定義域上是增函數(shù),
∴函數(shù)的零點是唯一的,
則a<c<b,
故選:B.
點評 本題考查的重點是函數(shù)的零點及個數(shù)的判斷,基本初等函數(shù)的單調性的應用,解題的關鍵是利用零點存在定理,確定零點的值或范圍.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -4 | B. | -2 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y2=$\frac{1}{8}$x | B. | y2=2x | C. | y=2x2 | D. | y=$\frac{1}{2}$x2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈(-∞,0),x3+2x<0 | B. | ?x∈[0,+∞),x3+2x<0 | C. | ?x∈(-∞,0),x3+2x≥0 | D. | ?x∈[0,+∞),x3+2x≥0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | .1 | B. | .2 | C. | .3 | D. | .4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (cosx)′=sinx | B. | (ax)′=axlna | C. | ${({sin\frac{π}{12}})^'}=cos\frac{π}{12}$ | D. | ${({{x^{-5}}})^'}=-\frac{1}{5}{x^{-6}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com