13.若-2≤x≤2,則函數(shù)$f(x)={(\frac{1}{4})}^{x}-3•{(\frac{1}{2})}^{x}+2$的值域為[$-\frac{1}{4}$,6].

分析 先寫出$f(x)=(\frac{1}{2})^{2x}-3•(\frac{1}{2})^{x}+2$,從而可設$(\frac{1}{2})^{x}=t$,根據(jù)x的范圍即可求出t的范圍,進而得到二次函數(shù)y=t2-3t+2,這樣配方求該函數(shù)的值域即可得出f(x)的值域.

解答 解:$f(x)=(\frac{1}{2})^{2x}-3•(\frac{1}{2})^{x}+2$,-2≤x≤2;
設$(\frac{1}{2})^{x}=t$,則$\frac{1}{4}≤t≤4$;
∴$y={t}^{2}-3t+2=(t-\frac{3}{2})^{2}-\frac{1}{4}$;
∴$t=\frac{3}{2}$時,${y}_{min}=-\frac{1}{4}$,t=4時,ymax=6;
∴f(x)的值域為$[-\frac{1}{4},6]$.
故答案為:$[-\frac{1}{4},6]$.

點評 考查指數(shù)式的運算,換元法求函數(shù)的值域,以及配方求二次函數(shù)值域的方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知等差數(shù)列{an}的首項為a1,公差為d,其前n項和為Sn,若直線y=a1x+m與圓x2+(y-1)2=1的兩個交點關于直線x+y-d=0對稱,則數(shù)列($\frac{1}{{S}_{n}}$)的前100項的和為$\frac{200}{101}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=cosx+ex-2(x<0)與g(x)=cosx+ln(x+m)圖象上存在關于y軸對稱的點,則m的取值范圍是(  )
A.(-∞,$\frac{1}{e}$)B.(-∞,$\frac{1}{\sqrt{e}}$)C.(-∞,$\sqrt{e}$)D.(-∞,e)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,四棱錐P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是兩個邊長為2的正三角形,DC=4,O為BD的中點,E為PA的一動點.
(1)求證:PO⊥平面ABCD;
(2)求直線CB與平面PDC所成角的正弦值;
(3)當$\overrightarrow{PE}=λ\overrightarrow{PA}$時,二面角E-BD-A的余弦值為$\frac{{\sqrt{5}}}{5}$,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在等比數(shù)列中,若a4•a7+a5•a6=20,則此數(shù)列前10項的積為105

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{|x-y|≤1}\\{|2x+y|≤2}\end{array}\right.$則|x-$\frac{1}{3}$|-y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.經(jīng)過點(2,0)且與曲線$y=\frac{1}{x}$相切的直線方程為(  )
A.x+4y+2=0B.x+4y-2=0C.x+y+2=0D.x+y-2=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.曲線f(x)=ex在點(1,f(1))處的切線與該曲線及y軸圍成的封閉圖形的面積為(  )
A.$\frac{e}{2}$B.eC.e-1D.$\frac{e}{2}$-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知命題p:若$?x∈(-\frac{π}{2},0)$,tanx<0,命題q:?x0∈(0,+∞),${2^{x_0}}=\frac{1}{2}$,則下列命題為真命題的是
( 。
A.p∧qB.(¬p)∧(?q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

同步練習冊答案