分析 由約束條件作出可行域,分類化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{|x-y|≤1}\\{|2x+y|≤2}\end{array}\right.$作出可行域如圖,
令z=|x-$\frac{1}{3}$|-y=$\left\{\begin{array}{l}{x-y-\frac{1}{3},x>\frac{1}{3}}\\{-x-y+\frac{1}{3},x≤\frac{1}{3}}\end{array}\right.$,
聯(lián)立$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=x-1}\end{array}\right.$,解得A($\frac{1}{3}$,-$\frac{2}{3}$).
聯(lián)立$\left\{\begin{array}{l}{y=x-1}\\{y=-2x-2}\end{array}\right.$,解得B($-\frac{1}{3},-\frac{4}{3}$).
由圖可知,當直線z=-x-y+$\frac{1}{3}$過B時,|x-$\frac{1}{3}$|-y的最大值為2.
故答案為:2.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0<f'(2)<f'(3)<f(3)-f(2) | B. | 0<f'(3)<f'(2)<f(3)-f(2) | C. | 0<f'(3)<f(3)-f(2)<f'(2) | D. | 0<f(3)-f(2)<f'(2)<f'(3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z) | B. | [kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$](k∈Z) | ||
C. | [kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z) | D. | [kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com