分析 通過直線y=a1x+m與直線x+y-d=0垂直可知a1=1,利用直線x+y-d=0必過圓心可知d=1,求出等差數(shù)列的前n項(xiàng)和,再由裂項(xiàng)相消法求得數(shù)列{$\frac{1}{{S}_{n}}$}的前100項(xiàng)的和.
解答 解:依題意,直線x+y-d=0的斜率為-1,
則a1=1,
又∵直線y=a1x+m與圓x2+(y-1)2=1的兩個(gè)交點(diǎn)關(guān)于直線x+y-d=0對稱,
∴直線x+y-d=0必過圓心,
即0+1-d=0,d=1,
∴數(shù)列{an}是首項(xiàng)、公差均為1的等差數(shù)列,
∴Sn=n+$\frac{n(n-1)×1}{2}$=$\frac{n(n+1)}{2}$,
∴$\frac{1}{{S}_{n}}=\frac{2}{n(n+1)}=2(\frac{1}{n}-\frac{1}{n+1})$,
∴數(shù)列{$\frac{1}{{S}_{n}}$}的前100項(xiàng)的和為$2(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{100}-\frac{1}{101})=\frac{200}{101}$,
故答案為:$\frac{200}{101}$.
點(diǎn)評 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查數(shù)形結(jié)合能力,注意解題方法的積累,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{2}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (1,2] | C. | [-1,2] | D. | [-1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<f'(2)<f'(3)<f(3)-f(2) | B. | 0<f'(3)<f'(2)<f(3)-f(2) | C. | 0<f'(3)<f(3)-f(2)<f'(2) | D. | 0<f(3)-f(2)<f'(2)<f'(3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 54 | B. | 50 | C. | 27 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com