20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為2x+y=0,一個(gè)焦點(diǎn)為($\sqrt{5}$,0),則雙曲線的離心率為$\sqrt{5}$.

分析 根據(jù)題意,結(jié)合雙曲線的標(biāo)準(zhǔn)方程分析可得$\frac{a}$=2,即b=2a,又由其焦點(diǎn)的坐標(biāo)可得c2=b2+a2=5,聯(lián)立解可得a、b的值,進(jìn)而可得c的值,由離心率計(jì)算公式計(jì)算可得答案.

解答 解:根據(jù)題意,雙曲線的方程為:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,其焦點(diǎn)在x軸上,
則其漸近線方程為y=±$\frac{a}$x,
又由該雙曲線的一條漸近線方程為2x+y=0,
則有$\frac{a}$=2,即b=2a,
又由其一個(gè)焦點(diǎn)為($\sqrt{5}$,0),則有c2=b2+a2=5,
解可得a=1,b=2;
故c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5}$;
則其離心率e=$\frac{c}{a}$=$\sqrt{5}$;
故答案為:$\sqrt{5}$.

點(diǎn)評(píng) 本題考查雙曲線的幾何性質(zhì),關(guān)鍵是利用待定系數(shù)法求出雙曲線的標(biāo)準(zhǔn)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在平面直角坐標(biāo)系xOy中,若雙曲線${x^2}-\frac{y^2}{b^2}=1(b>0)$的焦點(diǎn)到其漸近線的距離等于拋物線y2=2px上的點(diǎn)M(1,2)到其焦點(diǎn)的距離,則實(shí)數(shù)b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,一個(gè)圓心角為直角的扇形AOB 花草房,半徑為1,點(diǎn)P 是花草房弧上一個(gè)動(dòng)點(diǎn),不含端點(diǎn),現(xiàn)打算在扇形BOP 內(nèi)種花,PQ⊥OA,垂足為Q,PQ 將扇形AOP
分成左右兩部分,在PQ 左側(cè)部分三角形POQ 為觀賞區(qū),在PQ 右側(cè)部分種草,已知種花的單位面積的造價(jià)為3a,種草的單位面積的造價(jià)為2a,其中a 為正常數(shù),設(shè)∠AOP=θ,種花的造價(jià)與種草的造價(jià)的和稱為總造價(jià),不計(jì)觀賞區(qū)的造價(jià),設(shè)總造價(jià)為f(θ)
(1)求f(θ)關(guān)于θ 的函數(shù)關(guān)系式;
(2)求當(dāng)θ 為何值時(shí),總造價(jià)最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖所示,從左到右依次為:一個(gè)長(zhǎng)方體截去一個(gè)角所得多面體的直觀圖,該多面體的正視圖,該多面體的側(cè)視圖(單位:cm)
(1)按照給出的尺寸,求該多面體的體積;
(2)在所給直觀圖中連結(jié)BC′,證明:BC′∥平面EFG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知曲線C的極坐標(biāo)方程為ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$,以極點(diǎn)為原點(diǎn),極軸為x軸非負(fù)半軸建立平面直角坐標(biāo)系,則曲線C經(jīng)過(guò)伸縮變換$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=\frac{\sqrt{3}}{3}y}\end{array}\right.$后,得到的曲線是( 。
A.直線B.橢圓C.雙曲線D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在直四棱柱ABCD-A1B1C1D1中(側(cè)棱垂直于底面的四棱柱為直四棱柱),底面四邊形ABCD是直角梯形,其中AB⊥AD,AB=BC=1,且AD=$\sqrt{2}$AA1=2.
(1)求證:平面CDD1C1⊥平面ACD1;
(2)求三棱錐A1-ACD1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)p:實(shí)數(shù)x,y滿足(x-2)2+(y-2)2≤8,q:實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}y≥x-2\\ y≥2-x\\ y≤2\end{array}\right.$,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知圓C經(jīng)過(guò)A(-2,1),B(5,0)兩點(diǎn),且圓心C在直線y=2x上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)直線l:(m+2)x+(2m+1)y-7m-8=0與圓C相交于P,Q兩點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知拋物線${x^2}=-4\sqrt{5}y$的焦點(diǎn)與雙曲線$\frac{x^2}{a}+\frac{y^2}{4}=1(a∈R)$的一個(gè)焦點(diǎn)重合,則該雙曲線的漸近線方程為( 。
A.y=±2xB.y=±4xC.$y=±\frac{1}{4}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

同步練習(xí)冊(cè)答案