【題目】如圖,在以為頂點的多面體中, 平面, 平面, .
(1)請在圖中作出平面,使得,且,并說明理由;
(2)求直線和平面所成角的正弦值.
【答案】(1)見解析;(2).
【解析】試題分析:(1)取BC的中點P,連接EP,DP,證明平面ABF∥平面EDP,可得結(jié)論;(2)建立如圖所示的坐標系,求出平面BCE的法向量,利用向量方法求直線EF與平面BCE所成角的正弦值.
試題解析:(1)如圖,取中點,連接,則平面即為所求的平面.
顯然,以下只需證明平面;
∵,
∴且,
∴四邊形為平行四邊形,
∴.
又平面, 平面,
∴平面.
∵平面, 平面,
∴.
又平面, 平面,
∴平面,
又平面平面,
∴平面平面.
又平面,
∴平面,即平面.
(2)
過點作并交于,
∵平面,
∴,即兩兩垂直,
以為原點,以所在直線分別為軸,建立如圖所示空間直角坐標系.在等腰梯形中,∵,
∴,
則.
∵,∴,
∴.
設(shè)平面的法向量,
由,得,
取,可得平面的一個法向量.
設(shè)直線和平面所成角為,
又∵,
∴,
故直線和平面所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+c在x=﹣1與x=2處都取得極值. (Ⅰ)求a,b的值及函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對x∈[﹣2,3],不等式f(x)+ c<c2恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】要得到y(tǒng)= cos2x+sinxcosx的圖象,只需把y=sin2x的圖象上所有點( )
A.向左平移 個單位,再向上移動 個單位
B.向左平移 個單位,再向上移動 個單位
C.向右平移 個單位,再向下移動 個單位
D.向右平移 個單位,再向下移動 個單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2lnx.
(1)求證:f(x)在(1,+∞)上單調(diào)遞增.
(2)若f(x)≥2tx﹣ 在x∈(0,1]內(nèi)恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x)= ,有下列5個結(jié)論: ①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函數(shù)y=f(x)在區(qū)間[4,5]上單調(diào)遞增;
③f(x)=2kf(x+2k)(k∈N+),對一切x∈[0,+∞)恒成立;
④函數(shù)y=f(x)﹣ln(x﹣1)有3個零點;
⑤若關(guān)于x的方程f(x)=m(m<0)有且只有兩個不同實根x1 , x2 , 則x1+x2=3.
則其中所有正確結(jié)論的序號是 . (請寫出全部正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)關(guān)于x的一元二次方程x2+ax﹣ +1=0.
(1)若a是從1,2,3這三個數(shù)中任取的一個數(shù),b是從0,1,2這三個數(shù)中任取的一個數(shù),求上述方程中有實根的概率;
(2)若a是從區(qū)間[0,3]中任取的一個數(shù),b是從區(qū)間[0,2]中任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知m>1,直線l:x﹣my﹣ =0,橢圓C: +y2=1,F(xiàn)1、F2分別為橢圓C的左、右焦點. (Ⅰ)當直線l過右焦點F2時,求直線l的方程;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點,△AF1F2 , △BF1F2的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com