18.已知數(shù)列{an}中,a1=2,an-an-1=2n,(n≥2,n∈N*).
(Ⅰ)寫出a2,a3的值,并求出{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n+2}}$+$\frac{1}{{a}_{n+3}}$+…+$\frac{1}{{a}_{2n+1}}$,且bn≤m恒成立,求實(shí)數(shù)m的取值范圍.

分析 (Ⅰ)由已知直接求出a2,a3的值,并由累加法求出{an}的通項(xiàng)公式;
(Ⅱ)把數(shù)列通項(xiàng)公式代入bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n+2}}$+$\frac{1}{{a}_{n+3}}$+…+$\frac{1}{{a}_{2n+1}}$,利用裂項(xiàng)相消法化簡(jiǎn),求出最大值,可得bn≤m恒成立時(shí)實(shí)數(shù)m的取值范圍.

解答 解:(Ⅰ)∵a1=2,an-an-1=2n,∴a2=6,a3=12.
當(dāng)n≥2時(shí),an-an-1=2n,an-1-an-2=2(n-1),…,a3-a2=2×3,a2-a1=2×2,
累加可得:an-a1=2[n+(n-1)+…+3+2],
∴${a}_{n}=2[n+(n-1)+…+2+1]=2×\frac{n(n+1)}{2}=n(n+1)$.
當(dāng)n=1時(shí),a1=2滿足上式,
∴an=n(n+1);
(Ⅱ)bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n+2}}$+$\frac{1}{{a}_{n+3}}$+…+$\frac{1}{{a}_{2n+1}}$
=$\frac{1}{(n+1)(n+2)}+\frac{1}{(n+2)(n+3)}+…+$$\frac{1}{(2n+1)(2n+2)}$
=$\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+2}-\frac{1}{n+3}+…+\frac{1}{2n+1}-\frac{1}{2n+2}$
=$\frac{1}{n+1}-\frac{1}{2n+2}=\frac{1}{2(n+1)}$.
即當(dāng)n=1時(shí),$(_{n})_{max}=\frac{1}{4}$.
∴若bn≤m恒成立,則實(shí)數(shù)m的取值范圍為[$\frac{1}{4},+∞$).

點(diǎn)評(píng) 本題考查數(shù)列遞推式,訓(xùn)練了累加法求數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=x2-ax($\frac{1}{e}$≤x≤e,e為自然對(duì)數(shù)的底數(shù))與g(x)=ex的圖象上存在關(guān)于直線y=x對(duì)稱的點(diǎn),則實(shí)數(shù)a取值范圍是( 。
A.[1,e+$\frac{1}{e}$]B.[1,e-$\frac{1}{e}$]C.[e-$\frac{1}{e}$,e+$\frac{1}{e}$]D.[e-$\frac{1}{e}$,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),α∈[0,π)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=4cosθ.
(Ⅰ)求C2的直角坐標(biāo)方程;
(Ⅱ)若曲線C1與C2交于A,B兩點(diǎn),且|AB|>$\sqrt{7}$,求α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.古代數(shù)學(xué)家楊輝在沈括的隙積數(shù)的基礎(chǔ)上想到:若由大小相等的圓球剁成類似于正四棱臺(tái)的方垛,上底由a×a個(gè)球組成,楊輝給出求方垛中圓球總數(shù)的公式如下:S=$\frac{n}{3}$(a2+b2+ab+$\frac{b-a}{2}$),根據(jù)以上材料,我們可得12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)函數(shù)f(x)的定義域?yàn)镽,f(x)=$\left\{{\begin{array}{l}{x,0≤x<1}\\{{{(\frac{1}{3})}^x}-1,-1≤x<0}\end{array}}$且對(duì)任意的x∈R都有f(x+1)=f(x-1),若在區(qū)間[-1,5)上函數(shù)g(x)=f(x)-mx-m恰有4個(gè)不同零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.$({0,\frac{1}{4}}]$B.$({\frac{1}{4},\frac{1}{2}}]$C.$[{\frac{1}{4},\frac{1}{2}})$D.$({0,\frac{1}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若集合A={x|1≤3x≤81},B={x|log2(x2-x)>1},則A∩B=(2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥底面ABC,底面ABC是等腰直角三角形,CA=CB,A1B⊥AC1
(1)求證:平面A1BC⊥平面ABC1;
(2)若直線AA1與底面ABC所成的角為60°,求直線AA1與平面ABC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.定義在R上的函數(shù)f(x)滿足:f(2)=1,且對(duì)于任意的x∈R,都有f′(x)<$\frac{1}{3}$,則不等式f(log2x)>$\frac{lo{g}_{2}x+1}{3}$的解集為{x丨0<x<4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知i為虛數(shù)單位,則$\frac{1+i}{3-i}$=(  )
A.$\frac{2-i}{5}$B.$\frac{2+i}{5}$C.$\frac{1-2i}{5}$D.$\frac{1+2i}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案