【題目】已知函數(shù)

)求函數(shù)的單調(diào)區(qū)間和極值;

)已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱,證明當時,

)如果,且,證明

【答案】f(x)()內(nèi)是增函數(shù),在()內(nèi)是減函數(shù).函數(shù)f(x)x=1處取得極大值f(1)f(1)= )見解析()見解析

【解析】

)解:f’

f’(x)=0,解得x=1

x變化時,f’(x),f(x)的變化情況如下表

X

()

1

()

f’(x)

+

0

-

f(x)


極大值


所以f(x)()內(nèi)是增函數(shù),在()內(nèi)是減函數(shù).

函數(shù)f(x)x=1處取得極大值f(1)f(1)=

)證明:由題意可知g(x)=f(2-x),g(x)=(2-x)

F(x)=f(x)-g(x),

于是

x>1時,2x-2>0,從而’(x)>0,從而函數(shù)Fx)在[1,+∞)是增函數(shù).

F(1)=0,所以x>1時,有F(x)>F(1)=0,f(x)>g(x).

)證明:(1

2)若

根據(jù)(1)(2)得

由()可知,>,=,所以>,從而>.因為,所以,又由()可知函數(shù)f(x)在區(qū)間(-∞,1)內(nèi)事增函數(shù),所以>,>2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學家洛薩克拉茨在1950年世界數(shù)學家大會上公布的一個猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘3加1,不斷重復這樣的運算,經(jīng)過有限步后,最終都能夠得到1.己知正整數(shù)經(jīng)過6次運算后得到1,則的值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于不等式,其中

1)試求不等式的解集;

2)對于不等式的解集,若滿足(其中為整數(shù)集).試探究集合能否為有限集?若能,求出使得集合中元素個數(shù)最少時的取值范圍,并用列舉法表示集合;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設圓的圓心為,直線過點且與軸不重合,直線交圓,兩點,過點的平行線交于點.

1)證明為定值,并寫出點的軌跡方程;

2)設點的軌跡為曲線,直線,兩點,過點且與直線垂直的直線與圓交于,兩點,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】漢代數(shù)學家趙爽在注解《周髀算經(jīng)》時給出的趙爽弦圖是我國古代數(shù)學的瑰寶.如圖所示的弦圖中,由四個全等的直角三角形和一個正方形構(gòu)成.現(xiàn)有五種不同的顏色可供涂色,要求相鄰的區(qū)域不能用同一種顏色,則不同的涂色方案有(

A.180B.192C.420D.480

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國,緊跟黨走”為主題的黨史知識競賽。從參加競賽的學生中,隨機抽取40名學生,將其成績分為六段,,,,,到如圖所示的頻率分布直方圖.

1)求圖中的值及樣本的中位數(shù)與眾數(shù);

2)若從競賽成績在兩個分數(shù)段的學生中隨機選取兩名學生,設這兩名學生的競賽成績之差的絕對值不大于分為事件,求事件發(fā)生的概率.

3)為了激勵同學們的學習熱情,現(xiàn)評出一二三等獎,得分在內(nèi)的為一等獎,得分在內(nèi)的為二等獎, 得分在內(nèi)的為三等獎.若將頻率視為概率,現(xiàn)從考生中隨機抽取三名,設為獲得三等獎的人數(shù),求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某科研機構(gòu)為了研究喝酒與糖尿病是否有關(guān),現(xiàn)對該市30名男性成人進行了問卷調(diào)查,并得到了如下列聯(lián)表,規(guī)定平均每天喝100ml以上的為常喝.已知在所有的30人中隨機抽取1人,是糖尿病的概率為.

常喝

不常喝

合計

有糖尿病

2

無糖尿病

18

合計

30

1)請將上表補充完整;

2)是否有的把握認為糖尿病與喝酒有關(guān)?請說明理由.

3)已知常喝酒且有糖尿病的人中恰有兩名女性,現(xiàn)從常喝酒且有糖尿病的人中隨機抽取2人,求恰好抽到一名男性和一名女性的概率.

參考公式:

參考數(shù)據(jù):

k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上單調(diào)遞減,求的取值范圍;

(2)若過點可作曲線的三條切線,證明:.

查看答案和解析>>

同步練習冊答案