【題目】已知函數(shù),(其中為自然對數(shù)的底數(shù)).

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時,函數(shù)有最小值,求函數(shù)的值域.

【答案】1)當(dāng)時,上單調(diào)遞增;當(dāng)時,上單調(diào)遞減,上單調(diào)遞增;2.

【解析】

1)求出導(dǎo)數(shù),分成,兩種情況求導(dǎo)數(shù)為零的根,從而可探究出函數(shù)和導(dǎo)數(shù)隨自變量的變化情況.

2)求出,通過導(dǎo)數(shù)求出的單調(diào)性,結(jié)合零點存在定理得出存在,使得,即,從而得出的單調(diào)性,進(jìn)而求出的解析式,再利用的單調(diào)性,從而可求其值域.

1)解:,令,當(dāng)時,恒成立,此時單調(diào)遞增;

當(dāng)時,解得,,則的變化如下表,

上遞減,上遞增.

綜上所述,當(dāng)時,上單調(diào)遞增;當(dāng)時,上單調(diào)遞減,上單調(diào)遞增.

2)因為,,則

,設(shè),

,則上單調(diào)遞增.

對于,因為,,因此存在,

使得,即,故

當(dāng)時,,單調(diào)遞減;

當(dāng)時,,,單調(diào)遞增.

,則,由,

可知,單調(diào)遞增.得,.

所以的值域為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)若,求的極坐標(biāo)方程;

2)若恰有4個公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCDA1B1C1D1中,E,F分別為B1C1C1D1的中點,點P是上底面A1B1C1D1內(nèi)一點,且AP∥平面EFDB,則cosAPA1的最小值是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是邊長為2的正方形.平面,且

1)求證:平面平面

2)線段上是否存在一點,使三棱錐的高若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)界的震動,在1859年,德國數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想.在此之前,著名數(shù)學(xué)家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結(jié)論(素數(shù)即質(zhì)數(shù),).根據(jù)歐拉得出的結(jié)論,如下流程圖中若輸入的值為,則輸出的值應(yīng)屬于區(qū)間( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過點的直線交于不同的兩點,且滿足,以為中點的線段的兩端點分別為,其中軸上,上,則_______的最小值為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由四棱柱截去三棱錐后得到的幾何體如圖所示,四邊形是邊長為的正方形,的交點,的中點,平面

)證明:平面;

)若直線與平面所成的角為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為解決城市的擁堵問題,某城市準(zhǔn)備對現(xiàn)有的一條穿城公路MON進(jìn)行分流,已知穿城公路MON自西向東到達(dá)城市中心點O后轉(zhuǎn)向東北方向(即).現(xiàn)準(zhǔn)備修建一條城市高架道路L,LMO上設(shè)一出入口A,在ON上設(shè)一出入口B.假設(shè)高架道路LAB部分為直線段,且要求市中心OAB的距離為10km

1)求兩站點AB之間距離的最小值;

2)公路MO段上距離市中心O30km處有一古建筑群C,為保護(hù)古建筑群,設(shè)立一個以C為圓心,5km為半徑的圓形保護(hù)區(qū).則如何在古建筑群C和市中心O之間設(shè)計出入口A,才能使高架道路L及其延伸段不經(jīng)過保護(hù)區(qū)(不包括臨界狀態(tài))?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)對a∈(0,1),是否存在實數(shù)λ,,使成立,若存在,求λ的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案