18.若集合M={y|y=x4,x∈(-1,0)},集合$N=\left\{{x|y=ln\frac{x}{x-1}}\right\}$,則下列各式中正確的是(  )
A.M?NB.N?MC.M∩N=ϕD.M=N

分析 化簡集合M、N,根據(jù)集合的運(yùn)算法則即可得出結(jié)論.

解答 解:集合M={y|y=x4,x∈(-1,0)}={y|0<y<1}=(0,1),
集合$N=\left\{{x|y=ln\frac{x}{x-1}}\right\}$={x|$\frac{x}{x-1}$>0}={x|x<0或x>1}=(-∞,0)∪(1,+∞),
∴M∩N=∅.
故選:C.

點評 本題考查了集合的化簡與運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等比數(shù)列{an}共有2n+1項,其中a1=1,偶數(shù)項和為170,奇數(shù)項和為341,則n=( 。
A.3B.4C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)$f(x)=sin({2x+φ})({|φ|<\frac{π}{2}})$的圖象向左平移$\frac{π}{3}$個單位長度后,所得函數(shù)g(x)的圖象關(guān)于原點對稱,則函數(shù)f(x)在$[{0,\frac{π}{2}}]$的最大值為(  )
A.0B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.不透明盒子里裝有大小質(zhì)量完全相同的2個黑球,3個紅球,從盒子中隨機(jī)摸取兩球,顏色相同的概率為0.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ex,g(x)=lnx+1(x≥1),
(1)求函數(shù)h(x)=f(x-1)-g(x)(x≥1)的最小值;
(2)已知1≤y<x,求證:ex-y-1>lnx-lny;
(3)設(shè)H(x)=(x-1)2f(x),在區(qū)間(1,+∞)內(nèi)是否存在區(qū)間[a,b](a>1),使函數(shù)H(x)在區(qū)間[a,b]的值域也是[a,b]?請給出結(jié)論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線$\frac{x^2}{9}-\frac{y^2}{4}=1$,則其焦距為(  )
A.$\sqrt{5}$B.$2\sqrt{5}$C.$\sqrt{13}$D.$2\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=2sin(2x+φ)(|φ|<\frac{π}{2})$部分圖象如圖所示.
(Ⅰ)求φ值及圖中x0的值;
(Ⅱ)在△ABC中,A,B,C的對邊分別為a,b,c,已知$c=\sqrt{7}$,f(C)=-2,sinB=2sinA,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知實數(shù)x,y滿足:$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥2(x-3)}\end{array}\right.$,則z=2x+y的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=3x2+ex-2(x<0)與g(x)=3x2+ln(x+t)圖象上存在關(guān)于y軸對稱的點,則t的取值范圍是( 。
A.(-∞,$\frac{1}{e}$)B.(-∞,e)C.(-e,$\frac{1}{e}$)D.(-$\frac{1}{e}$,e)

查看答案和解析>>

同步練習(xí)冊答案