分析 (1)求出函數(shù)的導(dǎo)數(shù),結(jié)合x(chóng)的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可;
(2)問(wèn)題轉(zhuǎn)化為只需證明:x-y+1≥$\frac{x}{y}$,即證明:xy-y2+y-x≥0,而xy-y2+y-x=y(x-y)-(x-y)=(x-y)(y-1),從而證出結(jié)論;
(3)假設(shè)存在,得到方程(x-1)2ex=x有兩個(gè)大于1的不等實(shí)根,設(shè)函數(shù)G(x)=(x-1)2ex-x(x>1),根據(jù)函數(shù)的單調(diào)性得到G(x)在(1,+∞)上僅有一個(gè)零點(diǎn),得到矛盾,從而判斷結(jié)論.
解答 解:(1)h(x)=ex-1-lnx-1(x≥1),h′(x)=ex-1-$\frac{1}{x}$,
∵x∈[1,+∞),∴ex-1≥1,$\frac{1}{x}$∈(0,1],
∴h′(x)≥0,
∴函數(shù)h(x)在區(qū)間[1,+∞)上單調(diào)遞增,
∴h(x)min=h(1)=0;
(2)由(1)知,當(dāng)x≥1時(shí),ex-1-1≥lnx且當(dāng)x=1時(shí)取等號(hào),
∵1≤y<x,∴x-y+1>1
∴ex-y+1-1-1>ln(x-y+1),要證明ex-y-1>lnx-lny,
只需證明:ln(x-y+1)≥lnx-lny,只需證明:x-y+1≥$\frac{x}{y}$,
即證明:xy-y2+y-x≥0,而xy-y2+y-x=y(x-y)-(x-y)=(x-y)(y-1),
∵1≤y<x,∴x-y>0,y-1≥0,∴xy-y2+y-x=(x-y)(y-1)≥0,得證.
∴當(dāng)1≤y<x時(shí),ex-y-1>lnx-lny.
(3)H(x)=(x-1)2f(x),H′(x)=(x2-1)ex
假設(shè)存在區(qū)間[a,b](a>1),使函數(shù)H(x)在區(qū)間[a,b]的值域也是[a,b],
當(dāng)x>1時(shí),H′(x)>0,所以函數(shù)在區(qū)間(1,+∞)單調(diào)遞增,
故 $\left\{\begin{array}{l}{H(a){{=(e-1)}^{2}e}^{a}=a}\\{H(b){{=(b-1)}^{2}e}^=b}\end{array}\right.$,即方程(x-1)2ex=x有兩個(gè)大于1的不等實(shí)根,
設(shè)函數(shù)G(x)=(x-1)2ex-x(x>1),則G′(x)=(x2-1)ex-1,G′′(x)=(x2+2x-1)ex,
當(dāng)x>1時(shí),G′′(x)>0,即函數(shù)G′(x)=(x2-1)ex-1在區(qū)間(1,+∞)單調(diào)遞增,
又G′(1)=-1<0,G′(2)=3e2-1>0,所以存在唯一的x0∈(1,2)使得G′(x0)=0,
當(dāng)x∈(1,x0)時(shí),G′(x)<0,函數(shù)G(x)遞減,當(dāng)x∈(x0,+∞)時(shí),G′(x)>0,函數(shù)G(x)遞增,
所以函數(shù)G(x)有極小值G(x0)<G(1)=-1,G(2)=e2-2>0,
所以函數(shù)G(x)在(1,+∞)上僅有一個(gè)零點(diǎn),
這與方程(x-1)2ex=x有兩個(gè)大于1的不等實(shí)根矛盾,
故不存在區(qū)間[a,b](a>1),使函數(shù)H(x)在區(qū)間[a,b]的值域也是[a,b].
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 60° | B. | 45° | C. | 75° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M?N | B. | N?M | C. | M∩N=ϕ | D. | M=N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4985 | B. | 8185 | C. | 9970 | D. | 24555 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{8}$ | C. | $1-\frac{π}{4}$ | D. | $1-\frac{π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
印刷冊(cè)數(shù) (千冊(cè)) | 2 | 3 | 4 | 5 | 8 |
單冊(cè)成本 (元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
印刷冊(cè)數(shù)x(千冊(cè)) | 2 | 3 | 4 | 5 | 8 | |
單冊(cè)成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計(jì)值${\stackrel{∧}{{y}_{i}}}^{(1)}$ | 2.4 | 2.1 | 1.6 | ||
殘差${\stackrel{∧}{{e}_{i}}}^{(1)}$ | 0 | -0.1 | 0.1 | |||
模型乙 | 估計(jì)值 ${\stackrel{∧}{{y}_{i}}}^{(2)}$ | 2.3 | 2 | 1.9 | ||
殘差 ${\stackrel{∧}{{e}_{i}}}^{(2)}$ | 0.1 | 0 | 0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com