4.執(zhí)行如圖所示的程序框圖,若輸入的k,b,r的值分別為2,2,4,則輸出i的值是(  )
A.4B.3C.6D.7

分析 模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的x,y,i的值,當x=4,y=10時滿足條件,退出循環(huán),輸出i的值為3,從而得解.

解答 解:模擬程序的運行,可得:
k=2,b=2,r=4,i=0,x=-4
x=-3,y=-4
不滿足條件x2+y2<r2,不滿足條件x≥r,x=-2,y=-2
滿足條件x2+y2<r2,i=1,不滿足條件x≥r,x=-1,y=0
滿足條件x2+y2<r2,i=2,不滿足條件x≥r,x=0,y=2
滿足條件x2+y2<r2,i=3,不滿足條件x≥r,x=1,y=4
不滿足條件x2+y2<r2,不滿足條件x≥r,x=2,y=6
不滿足條件x2+y2<r2,不滿足條件x≥r,x=3,y=8
不滿足條件x2+y2<r2,不滿足條件x≥r,x=4,y=10
不滿足條件x2+y2<r2,滿足條件x≥r,退出循環(huán),輸出i的值為3.
故選:B.

點評 本題主要考查了循環(huán)結(jié)構的程序框圖,正確寫出每次循環(huán)得到的x,y,i的值是解題的關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知拋物線C:y2=2px(p>0)的焦點F,準線l,點A為C上一點,以F為圓心,F(xiàn)A為半徑作圓交l于B、D兩點,∠BFD=120°,△ABD的面積為4$\sqrt{3}$,則p的值為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知向量$\overrightarrow a$與$\overrightarrow b$滿足$|{\overrightarrow a}|=2|{\overrightarrow b}|$,若向量$\overrightarrow c=\overrightarrow a+\overrightarrow b$,且$\overrightarrow c⊥\overrightarrow b$,則$\overrightarrow a$與$\overrightarrow b$的夾角為120°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知四棱錐的正視圖與俯視圖如圖所示,該四棱錐的體積為24,則四棱錐的側(cè)視圖面積為6,四棱錐的表面積為60.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設函數(shù)$f(x)=\sqrt{lnx+x+m}$,若曲線$y=\frac{1-e}{2}cosx+\frac{1+e}{2}$上存在(x0,y0),使得f(f(y0))=y0成立,則實數(shù)m的取值范圍為(  )
A.[0,e2-e+1]B.[0,e2+e-1]C.[0,e2+e+1]D.[0,e2-e-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.生產(chǎn)甲乙兩種精密電子產(chǎn)品,用以下兩種方案分別生產(chǎn)出甲乙產(chǎn)品共3件,現(xiàn)對這兩種方案生產(chǎn)的產(chǎn)品分別隨機調(diào)查了100次,得到如下統(tǒng)計表:
①生產(chǎn)2件甲產(chǎn)品和1件乙產(chǎn)品
正次品甲正品
甲正品
乙正品
甲正品
甲正品
乙次品
甲正品
甲次品
乙正品
甲正品
甲次品
乙次品
甲次品
甲次品
乙正品
甲次品
甲次品
乙次品
頻  數(shù)15201631108
②生產(chǎn)1件甲產(chǎn)品和2件乙產(chǎn)品
正次品乙正品
乙正品
甲正品
乙正品
乙正品
甲次品
乙正品
乙次品
甲正品
乙正品
乙次品
甲次品
乙次品
乙次品
甲正品
乙次品
乙次品
甲次品
頻  數(shù)81020222020
已知生產(chǎn)電子產(chǎn)品甲1件,若為正品可盈利20元,若為次品則虧損5元;生產(chǎn)電子產(chǎn)品乙1件,若為正品可盈利30元,若為次品則虧損15元.
(1)按方案①生產(chǎn)2件甲產(chǎn)品和1件乙產(chǎn)品,求這3件產(chǎn)品平均利潤的估計值;
(2)從方案①②中選其一,生產(chǎn)甲乙產(chǎn)品共3件,欲使3件產(chǎn)品所得總利潤大于30元的機會多,應選用哪個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,已知橢圓C1的中心在原點O,長軸左、右端點M、N在x軸上,橢圓C2的短軸為MN,且C1、C2的離心率都為e,直線l⊥MN,l與C1交于兩點,與C2交于兩點,這四點縱坐標從大到小依次為A、B、C、D.
(1)設$e=\frac{1}{2}$,求|BC|與|AD|的比值;
(2)若存在直線l,使得BO∥AN,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N≡n(bmodm),例如10≡4(bmod6),如圖程序框圖的算法源于我國古代《孫子算經(jīng)》中的“孫子定理”的某一環(huán)節(jié),執(zhí)行該框圖,輸入a=2,b=3,c=5,則輸出的N=( 。
A.6B.9C.12D.21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上有一個點A,它關于原點的對稱點為B,點F為橢圓的右焦點,且滿足AF⊥BF,當∠ABF=$\frac{π}{12}$時,橢圓的離心率為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

同步練習冊答案