14.若直線1的傾斜角α∈($\frac{π}{4}$,$\frac{π}{3}$).則其斜率k的范圍為(1,$\sqrt{3}$).

分析 直接由直線的傾斜角結(jié)合正切函數(shù)的單調(diào)性求得直線斜率的范圍.

解答 解:直線1的傾斜角α∈($\frac{π}{4}$,$\frac{π}{3}$),
∴直線l的斜率k的取值范圍是1<k<$\sqrt{3}$,
故答案為:(1,$\sqrt{3}$)

點評 本題考查直線的斜率的取值范圍的求法,是基礎(chǔ)題,解題時要注意正切函數(shù)的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=$\frac{\sqrt{lo{g}_{2}x}}{lo{g}_{2}(3-x)}$的定義域為{x|1≤x<3且x≠2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.底面邊長和高都為2的正四棱錐的表面積為4+4$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ex-$\frac{a}{2}$x2ex,其中a∈R,e=2.71828…為自然對數(shù)的底數(shù).
(1)討論函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(2)對于區(qū)間(0,1)上任意一個實數(shù)a,是否存在x>0,使得f(x)>x+1?若存在,請求出符合條件的一個x,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.解不等式:$\sqrt{-{x}^{2}+4x-3}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}的前n項和為Sn,且Sn+an=2-($\frac{1}{2}}$)n-1(n∈N*).
(Ⅰ)令bn=2nan,求證:數(shù)列{bn}是等差數(shù)列;
(Ⅱ)令cn=$\frac{n+1}{n}$an,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.下列各組式子是否表示同一函數(shù),為什么?
(1)f(x)=|x|,φ(t)=$\sqrt{{t}^{2}}$;
(2)y=$\sqrt{{x}^{2}}$,y=($\sqrt{x}$)2;
(3)y=$\sqrt{x+1}$•$\sqrt{x-1}$,y=$\sqrt{{x}^{2}-1}$;
(4)y=$\sqrt{1+x}$•$\sqrt{1-x}$,y=$\sqrt{1-{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=log2(x-3)的定義域為(  )
A.[3,+∞)B.(3,+∞)C.(-∞,-3)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=cos(x+$\frac{5π}{2}}$)的圖象關(guān)于( 。
A.原點對稱B.y軸對稱C.直線x=$\frac{5π}{2}$對稱D.直線x=-$\frac{5π}{2}$對稱

查看答案和解析>>

同步練習(xí)冊答案