9.解不等式:$\sqrt{-{x}^{2}+4x-3}$<1.

分析 由題意,0≤-x2+4x-3<1,利用一元二次不等式的解法,可得結(jié)論.

解答 解:由題意,0≤-x2+4x-3<1,
∴x2-4x+3≤0且x2-4x+4>0,
∴1≤x<2或2<x≤3,
∴不等式的解集為{x|1≤x<2或2<x≤3}.

點(diǎn)評 本題考查不等式的解法,考查學(xué)生的轉(zhuǎn)化能力,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=sinx,若當(dāng)x∈[-$\frac{7π}{6}$,-$\frac{π}{3}$]時,m≤f(x)≤n恒成立,則n-m的最小值是(  )
A.2B.$\frac{{\sqrt{3}+1}}{2}$C.$\frac{3}{2}$D.$\frac{{\sqrt{3}-1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.定義在R上的偶函數(shù)f(x)滿足對任意x∈R,有f(x+2)=f(x)-f(1),且當(dāng)x∈[2,3]時,f(x)=-x2+6x-9,若函數(shù)y=f(x)-loga(x+1)在(0,+∞)上至少有3個零點(diǎn),則實(shí)數(shù)a的取值范圍是0<a<$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)直線l過點(diǎn)P(-3,3),且傾斜角為$\frac{5π}{6}$
(1)寫出直線l的參數(shù)方程;
(2)設(shè)此直線與曲線C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=4sinθ}\end{array}\right.$(θ為參數(shù))交A、B兩點(diǎn),求|PA|•|PB|;
(3)設(shè)A、B中點(diǎn)為M,求|PM|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.C${\;}_{n}^{0}$+3C${\;}_{n}^{1}$+5C${\;}_{n}^{2}$+…+(2n+1)C${\;}_{n}^{n}$=(n+1)•2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若直線1的傾斜角α∈($\frac{π}{4}$,$\frac{π}{3}$).則其斜率k的范圍為(1,$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知正四面體ABCD的棱長為1,如果一高為$\frac{{\sqrt{3}}}{6}$的長方體能在該正四面體內(nèi)任意轉(zhuǎn)動,則該長方體的長和寬形成的長方形面積的最大值為( 。
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{12}$D.$\frac{1}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.關(guān)于曲線C:$\frac{1}{{x}^{2}}$+$\frac{1}{{y}^{2}}$=1的下列說法正確的有①②④⑤.
①關(guān)于原點(diǎn)對稱;
②關(guān)于直線x+y=0對稱;
③是封閉圖形,面積大于2π;
④不是封閉圖形,與圓x2+y2=2無公共點(diǎn);
⑤與曲線D:|x|+|y|=2$\sqrt{2}$有且只有四個公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某工廠生產(chǎn)的A、B、C三種不同型號的產(chǎn)品數(shù)量之比依次為2:3:5,為研究這三種產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從該工廠生產(chǎn)的A、B、C三種產(chǎn)品中抽出樣本容量為n的樣本,若樣本中A型產(chǎn)品有16件,則n的值為80 .

查看答案和解析>>

同步練習(xí)冊答案