分析 (I)設(shè)P(x,y),求出$\overrightarrow{AP}$=(x,y-1),$\overrightarrow{BP}$=(x,y+1),$\overrightarrow{PC}$=(x-1,y).通過(guò)k=2,$\overrightarrow{AP}•\overrightarrow{BP}=2|\overrightarrow{PC}{|^2}$,化簡(jiǎn)求解點(diǎn)P的軌跡方程即可.
(II)通過(guò)k=0,推出$\overrightarrow{AP}•\overrightarrow{BP}=0$,得到x2+y2=1.化簡(jiǎn)|λ$\overrightarrow{AP}$+$\overrightarrow{BP}$|2=(2-2λ2) y+2λ2+2(y∈[-1,1]).然后求解表達(dá)式的最值即可.
解答 (本題滿分15分)
解:(I)設(shè)P(x,y),則$\overrightarrow{AP}$=(x,y-1),$\overrightarrow{BP}$=(x,y+1),$\overrightarrow{PC}$=(x-1,y).
因?yàn)閗=2,所以 $\overrightarrow{AP}•\overrightarrow{BP}=2|\overrightarrow{PC}{|^2}$,
所以 (x,y-1)?(x,y+1)=2[(x-1)2+y2],
化簡(jiǎn)整理,得 (x-2)2+y2=1,
故點(diǎn)P的軌跡方程為 (x-2)2+y2=1.…(7分)
(II)因?yàn)閗=0,所以$\overrightarrow{AP}•\overrightarrow{BP}=0$,
所以 x2+y2=1.
所以|λ$\overrightarrow{AP}$+$\overrightarrow{BP}$|2=λ2$\overrightarrow{AP}$2+$\overrightarrow{BP}$2
=λ2[x2+(y-1)2]+x2+(y+1)2
=(2-2λ2) y+2λ2+2(y∈[-1,1]).
當(dāng)2-2λ2>0時(shí),即-1<λ<1,
(|λ$\overrightarrow{AP}$+$\overrightarrow{BP}$|max)2=2-2λ2+2λ2+2=4≠16,不合題意,舍去;
當(dāng)2-2λ2≤0時(shí),即λ≥1或λ≤-1時(shí),
(|λ$\overrightarrow{AP}$+$\overrightarrow{BP}$|max)2=2λ2-2+2λ2+2=16,解得λ=±2.…(8分)
點(diǎn)評(píng) 本題考查軌跡方程的求法,向量的綜合應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,4,6} | B. | {2,4,6} | C. | {2,4} | D. | {4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ¬p:存在x∈R,sinx≥1 | B. | ¬p:任意x∈R,sinx≥1 | ||
C. | ¬p:存在x∈R,sinx>1 | D. | ¬p:任意x∈R,sinx>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com