16.4個(gè)唱歌節(jié)目,2個(gè)跳舞節(jié)目,任意排一張演出節(jié)目單,2個(gè)舞蹈節(jié)目一起演出的概率是$\frac{1}{3}$.

分析 先求出基本事件總數(shù)n=${A}_{6}^{6}$,再求出2個(gè)舞蹈節(jié)目一起演出包含的基本事件個(gè)數(shù),由此能求出2個(gè)舞蹈節(jié)目一起演出的概率.

解答 解:4個(gè)唱歌節(jié)目,2個(gè)跳舞節(jié)目,任意排一張演出節(jié)目單,
基本事件總數(shù)n=${A}_{6}^{6}$,
2個(gè)舞蹈節(jié)目一起演出包含的基本事件個(gè)數(shù)m=${A}_{2}^{2}{A}_{5}^{5}$,
∴2個(gè)舞蹈節(jié)目一起演出的概率p=$\frac{m}{n}$=$\frac{{A}_{2}^{2}{A}_{5}^{5}}{{A}_{6}^{6}}$=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知曲線C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0,x≥0)和曲線C2:x2+y2=r2(x≥0)都過點(diǎn)A(0,-1),且曲線C1所在的圓錐曲線的離心率為$\frac{\sqrt{3}}{2}$
(1)求曲線C1,C2的方程
(2)設(shè)點(diǎn)B,C分別在曲線C1,C2上,k1,k2分別為直線AB,AC的斜率,當(dāng)k2=4k1時(shí),
①直線BC是否經(jīng)過定點(diǎn)?請(qǐng)說明理由
②設(shè)E(0,1),求|$\overrightarrow{BC}$|•|$\overrightarrow{BE}$|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題正確的是( 。
A.若A,B,C是平面內(nèi)的三點(diǎn),則$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{BC}$
B.若$\overrightarrow{e_1}、\overrightarrow{e_2}$是兩個(gè)單位向量,則$\overrightarrow{e_1}=\overrightarrow{e_2}$
C.若$\overrightarrow a、\overrightarrow b$是任意兩個(gè)向量,則$|{\overrightarrow a+\overrightarrow b}|≤|{\overrightarrow a}|+|{\overrightarrow b}|$
D.向量$\overrightarrow{e_1}=(0,0),\overrightarrow{e_2}=(1,-2)$可以作為平面內(nèi)所有向量的一組基底

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f′(x)是f(x)的導(dǎo)數(shù),且y=xf′(x)的圖象如圖所示,則下列關(guān)于f(x)說法正確的是( 。
A.在(-∞,0)上是增函數(shù)B.在(-1,1)上是增函數(shù)
C.在(-1,0)上是增函數(shù)D.在(1,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知$f(x)=\frac{{a•{2^x}+a-2}}{{{2^x}+1}}$(x∈R),若f(x)滿足f(-x)+f(x)=0,
(1)求實(shí)數(shù)a的值及f(3);
(2)判斷函數(shù)的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow a=({2\sqrt{2},2})$,$\overrightarrow b=({0,2})$,$\overrightarrow c=({m,\sqrt{2}})$,且$({\overrightarrow a+2\overrightarrow b})⊥\overrightarrow c$,則實(shí)數(shù)m=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=$\left\{\begin{array}{l}{2x(0≤x≤1)}\\{{x}^{2}-4x+m(x>1)}\end{array}\right.$的值域?yàn)閇0,+∞),則m的取值范圍是m≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是(  )
A.奇函數(shù)B.偶函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知a=log0.34,b=log0.30.2,$c={({\frac{1}{e}})^π}$,將a,b,c用>號(hào)連起來為b>c>a.

查看答案和解析>>

同步練習(xí)冊(cè)答案