分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可.
解答 解:由已知得:f′(x)=x2-ax,a≠0,
(Ⅰ)a=1時(shí),f′(x)=x2-x=x(x-1),
由f′(x)>0,解得:x>1或x<0,
由f′(x)<0,解得:0<x<1,
故f(x)在(-∞,0),(1+∞)遞增,在(0,1)遞減;
(Ⅱ)g′(x)=f′(x)-f′(x0)=x2-ax-${{x}_{0}}^{2}$+ax0=(x-x0)(x+x0-a),
x∈($\frac{a}{2}$,+∞)時(shí),x+x0-a>$\frac{a}{2}$+x0-a>$\frac{a}{2}$+$\frac{a}{2}$-a=0,
若x∈($\frac{a}{2}$,x0),g′(x)<0,g(x)遞減,
若x∈(x0,+∞),g′(x)>0,g(x)遞增,
故g(x)在($\frac{a}{2}$,+∞)的最小值是:
g(x0)=f(x0)-f(x0)-(x0-x0)f′(x0)=0.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | (2,+∞) | C. | (1,$\root{3}{4}$) | D. | ($\root{3}{4}$,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{4}$ | B. | 1 | C. | 3-$\sqrt{3}$ | D. | $\sqrt{3}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com