17.已知直線l1:2x-3y+1=0,直線l2過點(1,-1)且與直線l1平行.
(1)求直線l2的方程;
(2)求直線l2與兩坐標軸圍成的三角形的面積.

分析 (1)設出直線l2的方程,代入點(1,-1),求出直線方程即可;(2)求出直線和坐標軸的交點,求出三角形的面積即可.

解答 解:(1)由題意設直線l2的方程是:2x-3y+a=0,
將(1,-1)代入方程得:2+3+a=0,解得:a=-5,
故直線l2的方程是:2x-3y-5=0;
(2)由(1)令x=0,解得:y=-$\frac{5}{3}$,
令y=0,解得:x=$\frac{5}{2}$,
故三角形的面積是:s=$\frac{1}{2}$×$\frac{5}{3}$×$\frac{5}{2}$=$\frac{25}{12}$.

點評 本題考查了求直線方程問題,考查三角形的面積,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知$α∈(\frac{π}{3},π)$,且$sin(α+\frac{π}{6})=\frac{3}{5}$,則cosα=( 。
A.$\frac{{3-4\sqrt{3}}}{10}$B.$\frac{{3+4\sqrt{3}}}{10}$C.$\frac{{-3-4\sqrt{3}}}{10}$D.$\frac{{-3+4\sqrt{3}}}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.等差數(shù)列{an}中,|a3|=|a9|,公差d<0,則使前n項和Sn取得最大值的正整數(shù)n的值是5或6,使前n項和Sn>0的正整數(shù)n的最大值是10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,已知等腰梯形ABCD中,AD∥BC,BC=2AD=2AB=4,將△ABC沿BD折到△A′BD的位置,使平面A′BD⊥平面CBD.
(Ⅰ)求證:CD⊥A′B;
(Ⅱ)試在線段A′C上確定一點P,使得三棱錐P-BDC的體積為$\frac{4\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某工程設備租賃公司為了調(diào)查A,B兩種挖掘機的出租情況,現(xiàn)隨機抽取了這兩種挖掘機各100臺,分別統(tǒng)計了每臺挖掘機在一個星期內(nèi)的出租天數(shù),統(tǒng)計數(shù)據(jù)如下表:
A型車挖掘機
出租天數(shù)1234567
車輛數(shù)51030351532
B型車挖掘機
出租天數(shù)1234567
車輛數(shù)1420201615105
(Ⅰ)根據(jù)這個星期的統(tǒng)計數(shù)據(jù),將頻率視為概率,求該公司一臺A型挖掘機,一臺B型挖掘機一周內(nèi)合計出租天數(shù)恰好為4天的概率;
(Ⅱ)如果A,B兩種挖掘機每臺每天出租獲得的利潤相同,該公司需要從A,B兩種挖掘機中購買一臺,請你根據(jù)所學的統(tǒng)計知識,給出建議應該購買哪一種類型,并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列函數(shù)為奇函數(shù)的是( 。
A.y=$\sqrt{x}$B.y=|sinx|C.y=ex-e-xD.y=cosx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{y≤-\frac{5}{2}x+9}\\{x≥2}\\{y≥-1}\end{array}\right.$,則z=$\frac{y+2}{x+2}$的最大值是$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若點A($\sqrt{3}$,1)的直線l1:$\sqrt{3}$x+ay-2=0與過點B($\sqrt{3}$,4)的直線l2交于點C,若△ABC是以AB為底邊的等腰三角形,則l2的方程為(  )
A.$\sqrt{3}$x+y-7=0B.$\sqrt{3}$x-y+7=0C.x+$\sqrt{3}$y-7=0D.x-$\sqrt{3}$y-7=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{3}{x^3}-\frac{1}{2}a{x^2}$+1,a≠0.
(I)當a=1時,求f(x)的單調(diào)區(qū)間;
(II)設x0>$\frac{a}{2}$,求函數(shù)g(x)=f(x)-f(x0)-(x-x0)f′(x0)在區(qū)間$(\frac{a}{2},+∞)$的最小值.

查看答案和解析>>

同步練習冊答案