14.在平面內將點A(2,1)繞原點按逆時針方向旋轉$\frac{3π}{4}$,得到點B,則點B的坐標為(-$\frac{3\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$).

分析 AC⊥x軸于C點,BD⊥x軸于D點,由點A的坐標得到AC,OC,可求sin∠AOC,cos∠AOC,再根據(jù)旋轉的性質得到∠BOC=∠AOC+$\frac{3π}{4}$,OA=OB,利用兩角和的正弦函數(shù),余弦函數(shù)公式即可得到B點坐標.

解答 解:如圖,作AC⊥x軸于C點,BD⊥x軸于D點,
∵點A的坐標為(2,1),
∴AC=1,OC=2,
∴OA=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,
∴sin∠AOC=$\frac{1}{\sqrt{5}}$,cos∠AOC=$\frac{2}{\sqrt{5}}$,
∵OA繞原點按逆時針方向旋轉$\frac{3π}{4}$得OB,
∴∠AOB=$\frac{3π}{4}$,OA=OB=$\sqrt{5}$,
∴∠BOC=∠AOC+$\frac{3π}{4}$,
∴sin∠BOC=sin(∠AOC+$\frac{3π}{4}$)=sin∠AOCcos$\frac{3π}{4}$+cos∠AOCsin$\frac{3π}{4}$=$\frac{1}{\sqrt{5}}$×(-$\frac{\sqrt{2}}{2}$)+$\frac{2}{\sqrt{5}}$×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{10}}{10}$,
cos∠BOC=cos(∠AOC+$\frac{3π}{4}$)=cos∠AOCcos$\frac{3π}{4}$-sin∠AOCsin$\frac{3π}{4}$=$\frac{2}{\sqrt{5}}$×(-$\frac{\sqrt{2}}{2}$)-$\frac{1}{\sqrt{5}}$×$\frac{\sqrt{2}}{2}$=-$\frac{3\sqrt{10}}{10}$,
∴DB=OBsin∠BOC=$\sqrt{5}$×$\frac{\sqrt{10}}{10}$=$\frac{\sqrt{2}}{2}$,OD=OBcos∠BOC=$\sqrt{5}$×(-$\frac{3\sqrt{10}}{10}$)=-$\frac{3\sqrt{2}}{2}$,
∴B點坐標為:(-$\frac{3\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$).
故答案為:(-$\frac{3\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$).

點評 本題考查了坐標與圖形變化-旋轉:把點旋轉的問題轉化為直角三角形旋轉的問題,根據(jù)直角三角形的性質確定點的坐標.也考查了兩角和與差的正弦函數(shù)公式的應用,考查了數(shù)形結合思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知輸入的 x 值為1,執(zhí)行如圖所示的程序框圖,則輸出的結果為( 。
A.1B.3C.7D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x+$\frac{1}{2}$)=$\frac{{x}^{2}+xcosx+2017}{{x}^{2}+2017}$,則$\sum_{i=1001}^{1016}$f($\frac{i}{2017}$)=16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.集合A={y|y=2x,x∈R},B={x∈Z|-2<x<4},則A∩B=( 。
A.{x|0<x<4}B.{1,2,3}C.{0,1,2,3}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知邊長為2的正方形ABCD的四個頂點在球O的球面上,球O的體積為V=$\frac{160\sqrt{5}π}{3}$,則OA與平面ABCD所成的角的余弦值為$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設函數(shù)f(x)=|x-1|-|2x+1|的最大值為m.
(Ⅰ)作出函數(shù)f(x)的圖象;
(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}滿足an+2=$\left\{\begin{array}{l}{{a}_{n}+2,n為奇數(shù)}\\{2{a}_{n},n為偶數(shù)}\end{array}\right.$,n∈N*,且a1=1,a2=2.
(1)求數(shù)列{an}的通項公式;
(2)令bn=(-1)nanan+1,n∈N*,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.根據(jù)此程序框圖輸出S的值為$\frac{11}{12}$,則判斷框內應填入的是( 。
A.i≤8?B.i≤6?C.i≥8?D.i≥6?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設△ABC的內角A、B、C所對的邊分別為a、b、c,若a2sinC=4sinA,cosB=$\frac{\sqrt{7}}{4}$,則△ABC的面積為( 。
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

同步練習冊答案