7.如圖,平面SAB為圓錐的軸截面,O為底面圓的圓心,M為母線SB的中點,N為底面圓周上的一點,AB=4,SO=6.
(1)求該圓錐的側面積;
(2)若直線SO與MN所成的角為30°,求MN的長.

分析 (1)由題意知SO⊥平面ABN,在RT△SOB中,由條件和勾股定理求出母線BS,由圓錐的側面積公式求出該圓錐的側面積;
(2)取OB的中點C,連接MC、NC,由條件和中位線定理可得MC∥SO、MC的長,由條件和線面角的定理求出∠NMC,在RT△MCN中由余弦函數(shù)求出MN的長.

解答 解:(1)由題意知,SO⊥平面ABN,
在RT△SOB中,OB=$\frac{1}{2}$AB=2,SO=6,
∴BS=$\sqrt{{2}^{2}+{6}^{2}}$=$2\sqrt{10}$,
∴該圓錐的側面積S=π•OB•BS=$4\sqrt{10}π$;
(2)取OB的中點C,連接MC、NC,
∵M為母線SB的中點,∴MC為△SOB的中位線,
∴MC∥SO,MC=$\frac{1}{2}$SO=3,
∵SO⊥平面ABN,∴MC⊥平面ABN,
∵NC?平面ABN,∴MC⊥NC,
∵直線SO與MN所成的角為30°,∴∠NMC=30°,
在RT△MCN中,$\frac{MC}{MN}=cos30°$,
∴MN=$\frac{MC}{cos30°}$=$\frac{3}{\frac{\sqrt{3}}{2}}$=$2\sqrt{3}$.

點評 本題考查圓錐的側面積公式,線面角的定理,以及線面垂直的定義,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)是定義在R上的奇函數(shù),若g(x)=f(x+1)+5,g′(x)為g(x)的導函數(shù),對?x∈R,總有g′(x)>2x,則g(x)<x2+4的解集為(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.由變量x與y的一組數(shù)據(jù):
x1571319
yy1y2y3y4y5
得到的線性回歸方程為$\stackrel{∧}{y}$=2x+45,則$\overline{y}$=( 。
A.135B.90C.67D.63

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列結論中正確的是( 。
A.∵a∥α,b∥α,∴a∥bB.∵a∥α,b?α,∴a∥bC.∵α∥β,a∥β,∴a∥αD.∵α∥β,a?β,∴a∥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.直線l過點A(1,-1),B(3,m),且斜率為2,則實數(shù)m的值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.給出命題:若方程mx2+ny2=1(m,n∈R)表示橢圓,則mn>0.在它的逆命題、否命題、逆否命題三個命題中,真命題的個數(shù)是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知拋物線y2=4x截直線y=2x+m所得弦長$|{AB}|=\sqrt{15}$.
(1)求m的值;
(2)設P是x軸上的點,且△ABP的面積為$\frac{{9\sqrt{3}}}{2}$,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在△ABC中,角A,B,C所對的邊分別為a,b,c,若1+$\frac{tanA}{tanB}$=$\frac{2c}$,則A=( 。
A.30°?B.45°?C.60°?D.120°?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知圓O的方程為x2+y2=4,過圓外一點P(3,$\sqrt{7}$)作圓O的兩條切線,切點分別為T1和T2,則$\overrightarrow{P{T}_{1}}$•$\overrightarrow{P{T}_{2}}$=6.

查看答案和解析>>

同步練習冊答案