6.已知函數(shù)f(x)=$\frac{{4}^{x}-{4}^{-x}}{3}$+log3($\sqrt{{x}^{2}+1}$+x),那么關(guān)于x的不等式f(2x-6)+f(x)>0的解集為( 。
A.{x|x>-2}B.{x|x>2}C.{x|0<x<2}D.{x|-2<x<2}

分析 根據(jù)條件先判斷函數(shù)的奇偶性和單調(diào)性,結(jié)合函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進(jìn)行等價(jià)轉(zhuǎn)化進(jìn)行求解即可.

解答 解:∵f(x)=$\frac{{4}^{x}-{4}^{-x}}{3}$+log3($\sqrt{{x}^{2}+1}$+x),
∴f(-x)=$\frac{{4}^{-x}-{4}^{x}}{3}$+log3($\sqrt{{x}^{2}+1}$-x)=-$\frac{{4}^{x}-{4}^{-x}}{3}$+log3($\sqrt{{x}^{2}+1}$+x)-1=-($\frac{{4}^{x}-{4}^{-x}}{3}$+log3($\sqrt{{x}^{2}+1}$+x))=-f(x),
即函數(shù)f(x)是奇函數(shù),
且函數(shù)f(x)在R上是增函數(shù),
則不等式f(2x-6)+f(x)>0等價(jià)為f(2x-6)>-f(x)=f(-x),
即2x-6>-x,即3x>6,得x>2,
即不等式的解集為{x|x>2},
故選:B.

點(diǎn)評(píng) 本題主要考查不等式的求解,根據(jù)條件判斷函數(shù)的奇偶性以及單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.?dāng)?shù)列{an}滿(mǎn)足a1=1,且對(duì)于任意的n∈N*都有an+1=an+a1+n,則$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2017}}}}$等于( 。
A.$\frac{2016}{2017}$B.$\frac{4032}{2017}$C.$\frac{2017}{2018}$D.$\frac{4034}{2018}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.記不等式組$\left\{\begin{array}{l}4x+3y≥10\\ x≤3\\ y≤4\end{array}\right.$表示的平面區(qū)域?yàn)镈,過(guò)區(qū)域D中任意一點(diǎn)P作圓x2+y2=1的兩條切線,切點(diǎn)分別為A,B,則cos∠PAB的最大值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知平面向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(m,-4)$,且$\overrightarrow a∥\overrightarrow b$,則$\overrightarrow a•\overrightarrow b$=( 。
A.4B.-6C.-10D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=|2x+1|-|x|+a,
(1)若a=-1,求不等式f(x)≥0的解集;
(2)若方程f(x)=2x有三個(gè)不同的解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.要得到函數(shù)y=sin(5x-$\frac{π}{4}$)的圖象,只需將函數(shù)y=cos5x的圖象( 。
A.向左平移$\frac{3π}{20}$個(gè)單位B.向右平移$\frac{3π}{20}$個(gè)單位
C.向左平移$\frac{3π}{4}$個(gè)單位D.向右平移$\frac{3π}{4}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x(a∈R+)在區(qū)間[2,4]上為單調(diào)遞增函數(shù),則$\frac{25}{a}$+a的取值范圍為( 。
A.[10,+∞)B.[$\frac{29}{2}$,+∞)C.[$\frac{25}{2}$,+∞)D.[$\frac{41}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系中,曲線C的方程為(x-2)2+y2=1,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)若P為曲線M:ρ=-2cosθ上任意一點(diǎn),Q為曲線C上任意一點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知菱形ABCD如圖(1)所示,其中∠ACD=60°,AB=2,AC與BD相交于點(diǎn)O,現(xiàn)沿AC進(jìn)行翻折,使得平面ACD⊥平面ABC,取點(diǎn)E,連接AE,BE,CE,DE,使得線段BE再平面ABC內(nèi)的投影落在線段OB上,得到的圖形如圖(2)所示,其中∠OBE=60°,BE=2.
(Ⅰ)證明:DE⊥AC;
(Ⅱ)求二面角A-BE-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案