【題目】設橢圓 的左右頂點分別為A,B,點P在橢圓上且異于A,B兩點,O為坐標原點.
(1)若直線AP與BP的斜率之積為 ,求橢圓的離心率;
(2)若|AP|=|OA|,證明直線OP的斜率k滿足|k|>

【答案】
(1)解:設P(x0,y0),∴

∵橢圓 的左右頂點分別為A,B,∴A(﹣a,0),B(a,0)

∵直線AP與BP的斜率之積為 ,∴

代入①并整理得

∵y0≠0,∴a2=2b2

∴橢圓的離心率為 ;


(2)證明:依題意,直線OP的方程為y=kx,設P(x0,kx0),∴

∵a>b>0,kx0≠0,∴

∵|AP|=|OA|,A(﹣a,0),

代入②得

∴k2>3

∴直線OP的斜率k滿足|k|>


【解析】(1)設P(x0 , y0),則 ,利用直線AP與BP的斜率之積為 ,即可求得橢圓的離心率;(2)依題意,直線OP的方程為y=kx,設P(x0 , kx0),則 ,進一步可得 ,利用AP|=|OA|,A(﹣a,0),可求得 ,從而可求直線OP的斜率的范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),記A(n)=a1+a2+…+an , B(n)=a2+a3+…+an+1 , C(n)=a3+a4+…+an+2 , n=1,2,….
(1)若a1=1,a2=5,且對任意n∈N* , 三個數(shù)A(n),B(n),C(n)組成等差數(shù)列,求數(shù)列{an}的通項公式.
(2)證明:數(shù)列{an}是公比為q的等比數(shù)列的充分必要條件是:對任意n∈N* , 三個數(shù)A(n),B(n),C(n)組成公比為q的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)滿足:對任意的,都有:

1)求證:函數(shù)是奇函數(shù);

2)若當時,有,求證:上是減函數(shù);

3)在(2)的條件下解不等式:;

4)在(2)的條件下求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個酒杯的軸截面是一條拋物線的一部分,它的方程是x2=2y,y∈[0,10],在杯內(nèi)放入一個清潔球,要求清潔球能擦凈酒杯的最底部(如圖),則清潔球的最大半徑為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線C:x2=2py(p>0)的焦點為F,準線為l,A∈C,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點;
(1)若∠BFD=90°,△ABD的面積為 ,求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點在同一直線m上,直線n與m平行,且n與C只有一個公共點,求坐標原點到m,n距離的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,F(xiàn)是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內(nèi)的任意一點,過M,F(xiàn),O三點的圓的圓心為Q,點Q到拋物線C的準線的距離為
(1)求拋物線C的方程;
(2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標;若不存在,說明理由;
(3)若點M的橫坐標為 ,直線l:y=kx+ 與拋物線C有兩個不同的交點A,B,l與圓Q有兩個不同的交點D,E,求當 ≤k≤2時,|AB|2+|DE|2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的六面體中,面是邊長為2的正方形,面是直角梯形,.

(1)求證:平面;

(2)若二面角為60°,求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程是為參數(shù)),以該直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)寫出曲線的普通方程和直線的直角坐標方程;

(2)設點,直線與曲線相交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線截圓所得的弦長為.直線的方程為

(1)求圓的方程;

(2)若直線過定點,點在圓上,且,為線段的中點,求點的軌跡方程.

查看答案和解析>>

同步練習冊答案