18.一個(gè)幾何體的三視圖及其尺寸如圖(單位:cm),則該幾何體的體積是(  )cm3
A.20πB.16πC.15πD.12π

分析 由已知中的三視圖,可得該幾何體是一個(gè)以俯視圖為底面的圓錐,代入圓錐體積公式,可得答案.

解答 解:由已知中的三視圖,可得該幾何體是一個(gè)以俯視圖為底面的圓錐,
圓錐的底面直徑為6,母線長為5,
故圓錐的底面半徑r=3,高h(yuǎn)=4,
故圓錐的體積V=$\frac{1}{3}{πr}^{2}h$=12π,
故選:D

點(diǎn)評 本題考查的知識點(diǎn)圓錐的體積和表面積,空間幾何體的三視圖.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在銳角△abc中,若a=$\sqrt{3}$,A=$\frac{π}{3}$.則b+c的取值范圍$(\sqrt{3},2\sqrt{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-2$\overrightarrow$|=1,則(2$\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$+2$\overrightarrow$)=( 。
A.-1B.4C.9D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求下列函數(shù)的定義域:
(1)y=tanx+$\frac{1}{tanx}$;
(2)y=$\sqrt{sinx}$+tanx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知M={x|1<x<3},N={x|x2-6x+8≤0}.
(1)設(shè)全集U=R,定義集合運(yùn)算△,使M△N=M∩(∁UN),求M△N和N△M;
(2)若H={x||x-a|≤2},按(1)的運(yùn)算定義求:(N△M)△H.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖可能是下列哪個(gè)函數(shù)的圖象( 。
A.y=2x-x2-1B.$y=\frac{{{2^x}sinx}}{4x+1}$C.$y=\frac{x}{lnx}$D.y=(x2-2x)ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.四棱錐P-ABCD的底面ABCD為正方形,PA⊥底面ABCD,AB=2,若該四棱錐的所有頂點(diǎn)都在表面積為16π的同一球面上,則PA=$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知二次函數(shù)f(x)=$\frac{1}{3}$x2+$\frac{2}{3}$x.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)在二次函數(shù)y=f(x)的圖象上.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=anan+1cos[(n+1)π](n∈N*),數(shù)列{bn}的前n項(xiàng)和為Tn,若Tn≥tn2對n∈N*恒成立,求實(shí)數(shù)t的取值范圍;
(Ⅲ)在數(shù)列{an}中是否存在這樣一些項(xiàng):a${\;}_{{n}_{1}}$,a${\;}_{{n}_{2}}$,a${\;}_{{n}_{3}}$,…,a${\;}_{{n}_{k}}$這些項(xiàng)都能夠
構(gòu)成以a1為首項(xiàng),q(0<q<5)為公比的等比數(shù)列{a${\;}_{{n}_{k}}$}?若存在,寫出nk關(guān)于f(x)的表達(dá)式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$\overrightarrow{a}$,$\overrightarrow$是夾角為60°的兩個(gè)單位向量,則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案