分析 確定函數(shù) f(x)=2x2-6x在區(qū)間[-1,0]上是減函數(shù),即可求函數(shù)f(x)=2x2-6x 在區(qū)間[-1,0]上的最大值.
解答 解:由題可知定義域是[-1,0].令y=2 u,u=x 2-6x,
二次函數(shù)u=x 2-6x在區(qū)間[-1,0]上是減函數(shù),
又∵y=2 u是增函數(shù),
∴函數(shù) f(x)=2x2-6x在區(qū)間[-1,0]上是減函數(shù).
∴函數(shù) f(x)=2x2-6x在區(qū)間[-1,0]上的最大值是f(-1)=27=128.
點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性與最值,考查學(xué)生的計(jì)算能力,確定函數(shù)的單調(diào)性是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{7}$ | B. | $\frac{1}{2}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 18 | B. | 144 | C. | 48 | D. | 12 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com