A. | 2 | B. | $\frac{{4\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{17}}}{2}$ | D. | $\frac{{2\sqrt{21}}}{21}$ |
分析 以D原點(diǎn),DA為x軸,AC為y軸,DD1為z軸,建立空間直角系,利用向量法能求出異面直線A1E與D1C1所成角的正切值.
解答 解:以D原點(diǎn),DA為x軸,AC為y軸,DD1為z軸,建立空間直角系,
設(shè)$AB=BC=\frac{1}{2}A{A_1}$=1,則A1(1,0,2),E($\frac{1}{2}$,1,0),C1(0,1,2),D1(0,0,2),
$\overrightarrow{{A}_{1}E}$=(-$\frac{1}{2}$,1,-2),$\overrightarrow{{D}_{1}{C}_{1}}$=(0,1,0),
設(shè)異面直線A1E與D1C1所成角為θ,
則cosθ=$\frac{|\overrightarrow{{A}_{1}E}•\overrightarrow{{D}_{1}{C}_{1}}|}{|\overrightarrow{{A}_{1}E}|•|\overrightarrow{{D}_{1}{C}_{1}}|}$=$\frac{1}{\sqrt{\frac{21}{4}}•\sqrt{1}}$=$\frac{2}{\sqrt{21}}$,
sinθ=$\sqrt{1-(\frac{2}{\sqrt{21}})^{2}}$=$\frac{\sqrt{17}}{\sqrt{21}}$,
∴tanθ=$\frac{\frac{\sqrt{17}}{\sqrt{21}}}{\frac{2}{\sqrt{21}}}$=$\frac{\sqrt{17}}{2}$.
∴異面直線A1E與D1C1所成角的正切值為$\frac{\sqrt{17}}{2}$.
故選:C.
點(diǎn)評(píng) 本題考查異面直線所成角的正切值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 4 | C. | 6 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x0∈R,使得x2-2x-3>0成立 | B. | ?x0∈R,使得x2-2x-3≥0成立 | ||
C. | ?x∈R,x2-2x-3<0恒成立 | D. | ?x∈R,x2-2x-3≥0恒成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |a|<|b| | B. | $\frac{1}{a}>\frac{1}$ | C. | sina>sinb | D. | lna>lnb |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com