6.已知函數(shù)f(x)=|x+2|+|x-2|.
(1)求不等式f(x)≤6的解集A;
(2)若m,n∈A,試證:|${\frac{1}{3}$m-$\frac{1}{2}$n|≤$\frac{5}{2}$.

分析 (1)分類討論,即可求不等式f(x)≤6的解集A;
(2)利用絕對值不等式,即可證明結(jié)論.

解答 (1)解:不等式|x+2|+|x-2|≤6可以轉(zhuǎn)化為$\left\{{\begin{array}{l}{x≤-2}\\{-({x+2})-({x-2})≤6}\end{array}}\right.$或$\left\{{\begin{array}{l}{-2<x≤2}\\{({x+2})-({x-2})≤6}\end{array}}\right.$
或$\left\{{\begin{array}{l}{x>2}\\{({x+2})+({x-2})≤6}\end{array}}\right.$,
解得-3≤x≤3,
即不等式的解集A={x|-3≤x≤3}.
(2)證明:因?yàn)?|{\frac{1}{3}m-\frac{1}{2}n}|≤|{\frac{1}{3}m}|+|{\frac{1}{2}n}|=\frac{1}{3}|m|+\frac{1}{2}|n|$,
又因?yàn)閙,n∈A,所以|m|≤3,|n|≤3,
所以$\frac{1}{3}|m|+\frac{1}{2}|n|≤\frac{1}{3}×3+\frac{1}{2}×3=\frac{5}{2}$,當(dāng)且僅當(dāng)m=-n=±3時(shí),等號成立,
即$|{\frac{1}{3}m-\frac{1}{2}n}|≤\frac{5}{2}$,得證.

點(diǎn)評 本題考查不等式的解法與證明,考查絕對值不等式的運(yùn)用,考查分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知某地鐵1號線上,任意一站到M站的票價(jià)不超過5元,現(xiàn)從那些只乘坐1號線地鐵,且在M站出站的乘客中隨機(jī)選出120人,他們乘坐地鐵的票價(jià)統(tǒng)計(jì)如圖所示.
(I)如果從那些只乘坐1號線地鐵,且在M站出站的乘客中任選1人,試估計(jì)此人乘坐地鐵的票價(jià)小于5元的概率;
(II)已知選出的120人中有6名學(xué)生,且這6人乘坐地鐵的票價(jià)情形恰好與按票價(jià)從這120中分層抽樣所選的結(jié)果相同,現(xiàn)從這6人中隨機(jī)選出2人,求這2人的票價(jià)和恰好為8元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.為選拔選手參加“中國漢字聽寫大全”,某中學(xué)舉行了一次“漢字聽寫大賽”活動.為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(Ⅰ)求樣本容量n和頻率分布直方圖中的x、y的值;
(Ⅱ)在選取的樣本中,從競賽成績在80分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“中國漢字聽寫大會”,每次抽取1人,求在第1次抽取的成績低于90分的前提下,第2次抽取的成績?nèi)缘陀?0分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知角α的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過點(diǎn)P(1,-2),則sin2α=( 。
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.過雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a,b>0)的右焦點(diǎn)且垂直于x軸的直線與C的漸近線相交于A,B兩點(diǎn),若△AOB(O為原點(diǎn))為正三角形,則C的離心率是$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=2xex的一個(gè)原函數(shù)為( 。
A.2xex(1+ln2)B.$\frac{{2}^{x}{e}^{x}}{(1+ln2)}$C.2exln2D.$\frac{2{e}^{x}}{ln2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)x1,x2為f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)的兩個(gè)零點(diǎn),且|x2-x1|的最小值為1,則ω=( 。
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.等比數(shù)列{an}中,若a2a5=2a3,a4與a6的等差中項(xiàng)為$\frac{5}{4}$,則a1=±16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.橢圓$C:\frac{x^2}{4}+\frac{y^2}{3}=1$與雙曲線$E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$有相同的焦點(diǎn),且兩曲線的離心率互為倒數(shù),則雙曲線漸近線的傾斜角的正弦值為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案