【題目】如圖,在長(zhǎng)方體中,
,
,點(diǎn)
,
,
分別是線段
,
,
的中點(diǎn).
(1)求證:平面
;
(2)在線段上有一點(diǎn)
,若二面角
的余弦值為
,求點(diǎn)
到平面
的距離.
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)以長(zhǎng)方體的頂點(diǎn)D為原點(diǎn),建立空間直角坐標(biāo)系,利用平面
的法向量和
垂直可證得結(jié)果;
(2)求出平面的法向量,平面
的法向量,由二面角
的余弦值為
,求出
,
,利用向量法能求出點(diǎn)
到平面
的距離.
解:(1)證明:如圖,以長(zhǎng)方體的頂點(diǎn)
為原點(diǎn),建立空間直角坐標(biāo)系,
則,
,
,
,
,
,
分別是
,
,
的中點(diǎn),
則,
,
,
平面的一個(gè)法向量
,
,0,
,
,
平面
,
平面
.
(2)解:設(shè)點(diǎn),其中,
,
則,
,
設(shè)平面的法向量
,
,
,
則,取
,得
,1,
,
平面的一個(gè)法向量為
,
由二面角的余弦值為
,可得
,
,化簡(jiǎn)得
,
解得或
,
,
,
,
,
,
,
點(diǎn)
到平面
的距離
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某省各景點(diǎn)在大眾中的熟知度,隨機(jī)對(duì)15~65歲的人群抽樣了人,回答問(wèn)題“某省有哪幾個(gè)著名的旅游景點(diǎn)?”統(tǒng)計(jì)結(jié)果如下圖表
組號(hào) | 分組 | 回答正確 的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第1組 | [15,25) | 0.5 | |
第2組 | [25,35) | 18 | |
第3組 | [35,45) | 0.9 | |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 |
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)在(2)抽取的6人中隨機(jī)抽取2人,求所抽取的人中恰好沒(méi)有第3組人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線
在點(diǎn)
處的切線方程為
.
(1)求的解析式;
(2)判斷方程在
內(nèi)的解的個(gè)數(shù),并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校共有教職工900人,分成三個(gè)批次進(jìn)行繼續(xù)教育培訓(xùn),在三個(gè)批次中男、女教職工人數(shù)如下表所示. 已知在全體教職工中隨機(jī)抽取1名,抽到第二批次中女教職工的概率是0.16 .
(1)求的值;
(2)現(xiàn)用分層抽樣的方法在全體教職工中抽取54名做培訓(xùn)效果的調(diào)查, 問(wèn)應(yīng)在第三批次中抽取教職工多少名?
(3)已知,求第三批次中女教職工比男教職工多的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,四邊形
是菱形,四邊形
是正方形,
,
,
,點(diǎn)
為
的中點(diǎn).
(1)求證:平面
;
(2)求平面與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】法國(guó)有個(gè)名人叫做布萊爾·帕斯卡,他認(rèn)識(shí)兩個(gè)賭徒,這兩個(gè)賭徒向他提出一個(gè)問(wèn)題,他們說(shuō),他們下賭金之后,約定誰(shuí)先贏滿5局,誰(shuí)就獲得全部賭金700法郎,賭了半天,甲贏了4局,乙贏了3局,時(shí)間很晚了,他們都不想再賭下去了.假設(shè)每局兩賭徒輸贏的概率各占,每局輸贏相互獨(dú)立,那么這700法郎如何分配比較合理( )
A.甲400法郎,乙300法郎B.甲500法郎,乙200法郎
C.甲525法郎,乙175法郎D.甲350法郎,乙350法郎
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
已知橢圓:
的左、右頂點(diǎn)分別為A,B,其離心率
,點(diǎn)
為橢圓上的一個(gè)動(dòng)點(diǎn),
面積的最大值是
.
(1)求橢圓的方程;
(2)若過(guò)橢圓右頂點(diǎn)
的直線
與橢圓的另一個(gè)交點(diǎn)為
,線段
的垂直平分線與
軸交于點(diǎn)
,當(dāng)
時(shí),求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】類比平面幾何中的定理:△ABC中,若DE是△ABC的中位線,則有S△ADE∶S△ABC=1∶4;若三棱錐A-BCD有中截面EFG∥平面BCD,則截得三棱錐的體積與原三棱錐體積之間的關(guān)系式為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
(
)和圓
:
,
分別是橢圓的左、右兩焦點(diǎn),過(guò)
且傾斜角為
(
)的動(dòng)直線
交橢圓
于
兩點(diǎn),交圓
于
兩點(diǎn)(如圖所示,點(diǎn)
在
軸上方).當(dāng)
時(shí),弦
的長(zhǎng)為
.
(1)求圓與橢圓
的方程;
(2)若依次成等差數(shù)列,求直線
的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com