4.已知P為橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上任意一點(diǎn),F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),M為PF1中點(diǎn).如圖所示:若|OM|+$\frac{1}{2}$|PF1|=2,離心率e=$\frac{\sqrt{3}}{2}$.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)已知直線l經(jīng)過(-1,$\frac{1}{2}$)且斜率為$\frac{1}{2}$與橢圓交于A,B兩點(diǎn),求弦長|AB|的值.

分析 (Ⅰ)由|OM|+$\frac{1}{2}$|PF1|=2,又|OM|=$\frac{1}{2}$|PF2|,$\frac{1}{2}$|PF1|+$\frac{1}{2}$|PF2|=2,可得a.又e=$\frac{\sqrt{3}}{2}$=$\frac{c}{a}$,a2=b2+c2.解出即可得出.
(Ⅱ)法一:設(shè)直線l:y-$\frac{1}{2}$=$\frac{1}{2}$(x+1),聯(lián)立直線與橢圓得:x2+2x=0,解出交點(diǎn)坐標(biāo)利用兩點(diǎn)之間的距離公式即可得出.
法二:聯(lián)立方程得x2+2x=0,利用|AB|=$\sqrt{(1+\frac{1}{4})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$即可得出.

解答 解:(Ⅰ)由|OM|+$\frac{1}{2}$|PF1|=2,又|OM|=$\frac{1}{2}$|PF2|,∴$\frac{1}{2}$|PF1|+$\frac{1}{2}$|PF2|=2,
∴a=2.
離心率e=$\frac{\sqrt{3}}{2}$=$\frac{c}{a}$,a2=b2+c2
解得b=1,c=$\sqrt{3}$.
故所求的橢圓方程為$\frac{{x}^{2}}{4}+{y}^{2}$=1.
(Ⅱ)法一:設(shè)直線l:y-$\frac{1}{2}$=$\frac{1}{2}$(x+1),
聯(lián)立直線與橢圓得:x2+2x=0,
所以,直線與橢圓相交兩點(diǎn)坐標(biāo)為(0,1),(-2,0).
∴|AB|=$\sqrt{{1}^{2}+(-2)^{2}}$=$\sqrt{5}$.
法二:聯(lián)立方程$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=\frac{1}{2}x+1}\end{array}\right.$,得x2+2x=0,
∴x1+x2=-2,x1•x2=0,
∴|AB|=$\sqrt{(1+\frac{1}{4})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{5}$.

點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交弦長問題、一元二次方程的根與系數(shù)的關(guān)系、兩點(diǎn)之間的距離公式、三角形中位線定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=ex(x-aex) 恰有兩個(gè)極值點(diǎn)x1,x2(x1<x2),則a的取值范圍是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$\overrightarrow{a}$=(4,2),$\overrightarrow$=(6,y),若$\overrightarrow{a}$⊥$\overrightarrow$,則y等于( 。
A.3B.-12C.-3D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知?jiǎng)訄A過定點(diǎn)(1,0),且與直線x=-1相切.
(1)求動圓圓心的軌跡M的方程;
(2)過(1)中軌跡M上的點(diǎn)P(1,2)作兩條直線分別與軌跡M相交于C(x1,y1),D(x2,y2)兩點(diǎn),試探究:當(dāng)直線PC,PD的斜率存在且傾斜角互補(bǔ)時(shí),直線CD的斜率是否為定值?若是,求出這個(gè)定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖所示,在邊長為2的正方形中有一封閉曲線圍成的陰影區(qū)域.在正方形中隨機(jī)撒一粒豆子,它落在陰影區(qū)域內(nèi)的概率為$\frac{2}{3}$,則陰影區(qū)域的面積為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線關(guān)于y軸對稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),并且經(jīng)過點(diǎn)M($\sqrt{3}$,-2$\sqrt{3}$)
(1)求拋物線的標(biāo)準(zhǔn)方程.
(2)如果直線y=x+m與這個(gè)拋物線交于不同的兩點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={y|y=2x-1},集合B={x|y=$\sqrt{{x}^{2}-4x+3}$},全集U=R,則(∁UA)∩B為(  )
A.(-∞,1]∪[3,+∞)B.(-∞,-1)C.(3,+∞)D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)a∈R,若函數(shù)y=aex+3x有大于零的極值點(diǎn),則實(shí)數(shù)a的取值范圍是(-3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點(diǎn)P(2,2),圓C:x2+y2-8y=0,過點(diǎn)P的動直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).當(dāng)|OP|=|OM|時(shí),則直線l的斜率( 。
A.k=3B.k=-3C.k=$\frac{1}{3}$D.k=-$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案