已知二次函數(shù)y=ax2+bx+c的對稱軸為x=1,一元二次方程ax2+bx+c=0有一根為3,則另一根為(  )
A、-3B、-1C、0D、1
考點:一元二次方程的根的分布與系數(shù)的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用二次函數(shù)的圖象特征,圖象關(guān)于對稱軸對稱,所以兩根也關(guān)于對稱軸對稱.
解答: 解:因為二次函數(shù)y=ax2+bx+c的對稱軸為x=1,一元二次方程ax2+bx+c=0有一根為3,設(shè)另一根為m,
所以3+m=1×2,
解得m=-1;
故選B.
點評:本題考查了二次函數(shù)的圖象關(guān)于對稱軸對稱以及運用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex+x2-x,若對任意x1,x2∈[-1,1],|f(x1)+f(x2)|≤k恒成立,則k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)對任意x,y∈R都有f(x+y)=f(x)+f(y),且當x>0時f(x)<0.
①判斷函數(shù)f(x)的單調(diào)性并證明;
②若f(1)=-2,f(x-1)<-6,試求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)滿足條件:f(0)=1,f(x+1)=f(x)+2x
(Ⅰ)求f(x);
(Ⅱ)討論二次函數(shù)f(x)在閉區(qū)間[t,t+1](t∈R)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2-2ax-1在[2,+∞)上是單調(diào)遞增函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=2cos2x-
3
sin2x(x∈R)的最小正周期和最小值分別為( 。
A、2π,3B、2π,-1
C、π,3D、π,-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)點P是函數(shù)y=-
x
(x+1)圖象上異于原點的動點,且該圖象在點P處的切線的傾斜角為θ,則θ的取值范圍是( 。
A、θ∈(
3
,π]
B、θ∈(
π
2
,
4
]
C、θ∈(
π
2
,
3
]
D、θ∈(
π
3
,
π
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2x+φ)(其中φ為實數(shù)),若f(x)≤|f(
π
6
)|對x∈r恒成立,且sinφ<0,則f(x)的單調(diào)遞增區(qū)間是
 
;(k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=2,an+1=an+
1
2
(n∈N+),則a101=( 。
A、50B、51C、52D、53

查看答案和解析>>

同步練習冊答案