7.設(shè)三角形ABC的內(nèi)角A,B,C所對的邊長分別是a,b,c,且$B=\frac{π}{3}$,若△ABC不是鈍角三角形,則$\frac{2a}{c}$的取值范圍是(1,4].

分析 先求得C的范圍,由正弦定理及兩角和的正弦函數(shù)公式化簡$\frac{2a}{c}$為1+$\frac{\sqrt{3}cosC}{sinC}$,由角C越大,$\frac{2a}{c}$越小,求得$\frac{2a}{c}$的取值范圍.

解答 解:三角形ABC中,∵$B=\frac{π}{3}$,若△ABC不是鈍角三角形,由A+C=$\frac{2π}{3}$,
可得$\frac{π}{6}$<C≤$\frac{π}{2}$.
利用正弦定理可得$\frac{2a}{c}$=$\frac{2sinA}{sinC}$=$\frac{2sin(B+C)}{sinC}$=$\frac{sinC+\sqrt{3}cosC}{sinC}$=1+$\frac{\sqrt{3}cosC}{sinC}$,
顯然,角C越大,$\frac{2a}{c}$越。
當(dāng)C=$\frac{π}{2}$時,cosC=0,則$\frac{2a}{c}$=1;當(dāng)$\frac{π}{6}$<C<$\frac{π}{2}$時,$\frac{2a}{c}$=1+$\frac{\sqrt{3}}{tanC}$∈(1,4).
綜上可得,$\frac{2a}{c}$∈(1,4],
故答案為:(1,4].

點(diǎn)評 本題主要考查了三角形內(nèi)角和定理,正弦定理及兩角和的正弦函數(shù)公式的應(yīng)用,屬于基本知識的考查,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a,b,c分別是△ABC的三個內(nèi)角A,B,C的三條對邊,且c2=a2+b2-ab.
(Ⅰ)求角C的大;
(Ⅱ)求cosA+cosB的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為$\frac{3}{5}$,且短軸長為8
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F1、F2分別為橢圓C的左、右焦點(diǎn),過F2的直線l與橢圓C交于不同兩點(diǎn)M,N,若△F1MN的內(nèi)切圓周長為π,M(x1,y1)、N(x2,y2),求|y1-y2|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A,B,C所對的邊分別是a,b,c,且$\frac{cosA}{a}$+$\frac{cosB}$=$\frac{1}{c}$.
(1)證明:a,c,b成等比數(shù)列;
(2)若△ABC的外接圓半徑為$\sqrt{3}$,且4sin(C-$\frac{π}{6}$)cosC=1,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知△ABC的頂點(diǎn)A(0,-4)、B(0,4),且4(sinB-sinA)=3sinC,則頂點(diǎn)C的軌跡方程是(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1(x>3)B.$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{9}$=1(x<-7)C.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{7}$=1(y>3)D.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{7}$=1(y<-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow m=({a,2}),\overrightarrow n=({1,1-a})$,且$\overrightarrow m⊥\overrightarrow n$,則實(shí)數(shù)a的值為(  )
A.0B.2C.-2或1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x-y≤0\\ x+y≤a\end{array}\right.({a>0})$,若z=x+ay的最大值為2,則$m+\frac{a^2}{{m-\sqrt{2}}}({m>\sqrt{2}})$的最小值為( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.$3\sqrt{2}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2b,又sinA,sinC,sinB成等差數(shù)列.
(1)求cosA的值;
(2)若${S_{△ABC}}=\frac{{8\sqrt{15}}}{3}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},-2≤x≤0}\\{x+1,0<x≤2}\end{array}\right.$,則${∫}_{-2}^{2}$f(x)dx的值為$\frac{20}{3}$.

查看答案和解析>>

同步練習(xí)冊答案