A. | ①② | B. | ②③ | C. | ①③ | D. | ①④ |
分析 利用不等式的基本性質(zhì)、函數(shù)的單調(diào)性即可判斷出是否正確.
解答 解:①a>b,c<d⇒a-c>b-d,正確;
②c<d<0⇒-c>-d>0,又a>b>0,⇒-ac>-bd,因此ac<bd,因此②不正確;
③利用函數(shù)f(x)=$\root{3}{x}$在R上單調(diào)遞增,因此a>b>0⇒$\root{3}{a}$>$\root{3}$,正確;
④a>b>0⇒$\frac{1}{{a}^{2}}$<$\frac{1}{^{2}}$,因此④不正確.
只有①③正確.
故選:C.
點(diǎn)評(píng) 本題考查了不等式的基本性質(zhì)、函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -sin3-cos3 | B. | sin3-cos3 | C. | sin3+cos3 | D. | cos3-sin3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $sin\sqrt{2}<cos\sqrt{2}<tan\sqrt{2}$ | B. | $cos\sqrt{2}<sin\sqrt{2}<tan\sqrt{2}$ | C. | $cos\sqrt{2}<tan\sqrt{2}<sin\sqrt{2}$ | D. | $sin\sqrt{2}<tan\sqrt{2}<cos\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com