分析 (1)設(shè)各項(xiàng)均不相等的等差數(shù)列{an}的公差為d,由等差數(shù)列的通項(xiàng)公式和等比數(shù)列中項(xiàng)的性質(zhì),解方程可得d=2,進(jìn)而得到所求通項(xiàng)公式;
(2)求得bn=(-1)n•$\frac{4n}{(2n-1)(2n+1)}$=(-1)n•($\frac{1}{2n-1}$+$\frac{1}{2n+1}$),再分n為偶數(shù)和奇數(shù),運(yùn)用裂項(xiàng)相消求和,化簡(jiǎn)整理即可得到所求和.
解答 解:(1)設(shè)各項(xiàng)均不相等的等差數(shù)列{an}的公差為d,滿足a1=1,
且a1,a2,a5成等比數(shù)列,
可得a22=a1a5,即(1+d)2=1+4d,
解得d=2(0舍去),
則an=1+2(n-1)=2n-1(n∈N*);
(2)bn=(-1)n$\frac{{a}_{n}+{a}_{n+1}}{{a}_{n}{a}_{n+1}}$=(-1)n•$\frac{4n}{(2n-1)(2n+1)}$
=(-1)n•($\frac{1}{2n-1}$+$\frac{1}{2n+1}$),
當(dāng)n為偶數(shù)時(shí),前n項(xiàng)和Sn=(-1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+(-$\frac{1}{5}$-$\frac{1}{7}$)+…+($\frac{1}{2n-1}$+$\frac{1}{2n+1}$)
=-1+$\frac{1}{2n+1}$=-$\frac{2n}{2n+1}$;
當(dāng)n為奇數(shù)時(shí),n-1為偶數(shù),前n項(xiàng)和Sn=Sn-1+(-$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=-$\frac{2(n-1)}{2n-1}$+(-$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=-$\frac{2n+2}{2n+1}$.
則Sn=$\left\{\begin{array}{l}{-\frac{2n}{2n+1},n為偶數(shù)}\\{-\frac{2n+2}{2n+1},n為奇數(shù)}\end{array}\right.$.
點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式的運(yùn)用,等比數(shù)列中項(xiàng)的性質(zhì),考查數(shù)列的求和,注意運(yùn)用分類討論和裂項(xiàng)相消求和,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | -7 | D. | -11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2 | C. | log29 | D. | log27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{2π}{3}$ | C. | $\frac{4π}{3}$ | D. | $\frac{8π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com