2.某幾何體的三視圖如圖所示,則此幾何體的外接球的表面積為( 。
A.B.13πC.17πD.48π

分析 如圖所示,由三視圖可知:該幾何體為一個三棱錐.其中PA⊥底面ABC,BC⊥AC.該幾何體的外接球的直徑為PB.

解答 解:如圖所示,由三視圖可知:該幾何體為一個三棱錐.其中PA⊥底面ABC,BC⊥AC.
∴該幾何體的外接球的直徑為PB=$\sqrt{{2}^{2}+{3}^{2}+{2}^{2}}$=$\sqrt{17}$.
∴此幾何體的外接球的表面積=4$π×(\frac{\sqrt{17}}{2})^{2}$=17π.
故選:C.

點評 本題考查了三棱錐與球的三視圖及其表面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2015-2016學年江西省南昌市高二理下學期期末考試數(shù)學試卷(解析版) 題型:選擇題

設(shè)函數(shù)f(x),g(x)在[A,B]上均可導,且f′(x)<g′(x),則當A<x<B時,有( )

A.f(x)>g(x)

B.f(x)+g(A)<g(x)+f(A)

C.f(x)<g(x)

D.f(x)+g(B)<g(x)+f(B)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若x 滿足${x^{\frac{1}{2}}}-{x^{-\frac{1}{2}}}=2\sqrt{3}$,則x+x-1=14.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{a(x-1)}{{x}^{2}}$,a≠0
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實數(shù)a的值;
(III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若全集U=R.A={x|1≤x≤5}.B={x|5≤x≤10}.則∁U(A∩B)=(  )
A.{x|x≠5}B.{x|x=5}C.{x|x<5}D.{x|x>5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.求下列函數(shù)的值域:
(1)y=$\frac{sinx-1}{sinx-2}$;
(2)y=2sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=sin2(x+$\frac{π}{4}$)-cos2(x+$\frac{π}{4}$)(x∈R),則函數(shù)f(x)是(  )
A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)
C.最小正周期為$\frac{π}{2}$的奇函數(shù)D.最小正周期為$\frac{π}{2}$的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.以模型y=cekx去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,則輸出m的值為( 。
A.$\frac{1}{2016}$B.$\frac{1}{2017}$C.$\frac{1}{4032}$D.$\frac{1}{4034}$

查看答案和解析>>

同步練習冊答案