分析 (1)求出c的值,求出函數(shù)的導(dǎo)數(shù),計算f′(1),得到關(guān)于a,b的方程組,求出函數(shù)的解析式即可;
(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.
解答 解:(1)f(x)=ax3+bx2+c的圖象經(jīng)過點(diǎn)(0,1),則c=1,…(2分)
f′(x)=3ax2+2bx,k=f′(1)=3a+2b=1…(3分)
切點(diǎn)為(1,1),則f(x)=ax3+bx2+c的圖象經(jīng)過點(diǎn)(1,1)
得a+b+c=1,得a=1,b=-1…(5分),
故f(x)=x3-x2+1…(6分)
(2)${f^'}(x)=3{x^2}-2x>0,得x>\frac{2}{3},x<0$,
令${f^'}(x)=3{x^2}-2x<0,得0<x<\frac{2}{3}$…(8分)
函數(shù)f(x)在$({-∞,0}),({\frac{2}{3},+∞})$單調(diào)遞增,在$({0,\frac{2}{3}})$單調(diào)遞減 …(9分)
所以函數(shù)f(x)在x=0取得極大值為1,在$x=\frac{2}{3}$取得極小值為$\frac{23}{27}$.
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{\sqrt{10}}{10}$ | C. | $\frac{2\sqrt{10}}{10}$ | D. | $\frac{3\sqrt{10}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,5] | B. | [1,5] | C. | (0,5) | D. | [1,25] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com