13.p:x>1,q:x>0,則p是q的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

分析 由p,q的x的范圍,結合充分必要條件的定義判斷即可.

解答 解:p:x>1,q:x>0,則p⇒q,當q推不出p,
故p是q的充分不必要條件,
故選:A

點評 本題考查了充分必要條件,考查解不等式問題,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=|x|,則下列結論正確的是( 。
A.奇函數(shù),在(-∞,0)上是減函數(shù)B.奇函數(shù),在(-∞,0)上是增函數(shù)
C.偶函數(shù),在(-∞,0)上是減函數(shù)D.偶函數(shù),在(-∞,0)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)f(x)=3sin(2x-$\frac{π}{3}$)的圖象為C,如下結論中正確的是①②③.
①圖象C關于直線x=$\frac{11}{12}$π對稱;      
②函數(shù)f(x)在區(qū)間(-$\frac{π}{12}$,$\frac{5π}{12}$)內(nèi)是增函數(shù);
③圖象C關于點($\frac{2π}{3}$,0)對稱;   
④由y=3sin2x圖象向右平移$\frac{π}{3}$個單位可以得到圖象C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知圓M上一點A(1,-1)關于直線y=x的對稱點仍在圓M上,直線x+y-1=0截得圓M的弦長為$\sqrt{14}$.
(1)求圓M的方程;
(2)設P是直線x+y+2=0上的動點,PE、PF是圓M的兩條切線,E、F為切點,求四邊形PEMF面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖所示,從左到右依次為:一個長方體截去一個角所得多面體的直觀圖,該多面體的正視圖,該多面體的側視圖(單位:cm)
(1)按照給出的尺寸,求該多面體的體積;
(2)在所給直觀圖中連結BC′,證明:BC′∥平面EFG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知各項均為正數(shù)的數(shù)列{an},其前n項和為Sn,且Sn,an,$\frac{1}{2}$成等差數(shù)列,則數(shù)列{an}的通項公式為( 。
A.2n-4B.2n-3C.2n-2D.2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在直四棱柱ABCD-A1B1C1D1中(側棱垂直于底面的四棱柱為直四棱柱),底面四邊形ABCD是直角梯形,其中AB⊥AD,AB=BC=1,且AD=$\sqrt{2}$AA1=2.
(1)求證:平面CDD1C1⊥平面ACD1
(2)求三棱錐A1-ACD1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=lg(mx-2x)(0<m<1).
(1)當m=$\frac{1}{2}$時,求f(x)的定義域.
(2)若f(x)在(-∞,-1]上恒取正值,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}x,x≥0\\-x{e^x},x<0\end{array}\right.$,方程f2(x)+tf(x)+1=0(t∈R)有四個不同的實數(shù)根,則實數(shù)t的取值范圍為$(-∞,-e-\frac{1}{e})$.

查看答案和解析>>

同步練習冊答案