17.已知離心率是$\sqrt{5}$的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點與拋物線y2=20x的焦點重合,則該雙曲線的標準方程為$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

分析 利用拋物線方程求出雙曲線的焦點坐標,通過離心率求出a,然后求解b,即可求解雙曲線方程.

解答 解:離心率是$\sqrt{5}$的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點與拋物線y2=20x的焦點重合,
可得c=5,$\frac{c}{a}$=$\sqrt{5}$,可得a=$\sqrt{5}$,則b=$\sqrt{{c}^{2}-{a}^{2}}$=2$\sqrt{5}$.
所求的雙曲線方程為:$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.
故答案為:$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

點評 本題考查拋物線以及雙曲線的簡單性質(zhì)的應用,雙曲線方程的求法,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.在平面直角坐標系xoy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=t+3}\\{y=3-t}\end{array}}\right.$(參數(shù)t∈R),圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ+2}\end{array}}\right.$(參數(shù)θ∈[0,2π])
(1)將直線l和圓C的參數(shù)方程化為普通方程;
(2)求圓心到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合A={x∈N|-1<x<5},B={x|-x2+5x+6>0},則A∩B=( 。
A.{-1,0,1,3}B.{-1,0,1,2}C.{-1,0,1}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{y-x≥0}\\{x+y-7≤0}\\{x≥0}\end{array}\right.$,則z=2x+y的最大值是( 。
A.$\frac{7}{2}$B.$\frac{21}{2}$C.14D.21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=$\frac{{x}^{2}}{2}$+sinx+2014,則f′(x)的大致圖象是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.若以直角坐標系xOy的O為極點,Ox為極軸,選擇相同的長度單位建立極坐標系,得曲線的極坐標方程是ρsin2θ=6cosθ.
(1)將曲線C的極坐標方程ρsin2θ=6cosθ化為直角坐標方程,并指出曲線是什么曲線;
(2)若直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{3}{2}+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),當直線l與曲線C相交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,0<x<2}\\{{{(\frac{2}{3})}^x}+\frac{5}{9},x≥2}\end{array}}\right.$.若函數(shù)g(x)=f(x)-k有兩個不同的零點,則實數(shù)k的取值范圍是$(\frac{5}{9},1)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設(shè)x、y滿足約束條件$\left\{{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≤2}\end{array}}\right.$,則z=-2x+3y的最小值是-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.過拋物線y2=4x的焦點F且斜率為$2\sqrt{2}$的直線交拋物線于A,B兩點(xA>xB),則$\frac{{|{AF}|}}{{|{BF}|}}$=( 。
A.$\frac{3}{2}$B.$\frac{3}{4}$C.3D.2

查看答案和解析>>

同步練習冊答案