分析 (1)用作差比較法證明(a2+b2)(c2+d2)≥(ac+bd)2成立.
(2)利用柯西不等式求得y=3$\sqrt{x-1}$+$\sqrt{20-4x}$=3$\sqrt{x-1}$+2$\sqrt{5-x}$≤$\sqrt{(9+4)(x-1+5-x)}$=2$\sqrt{13}$,可得函數(shù)y=3$\sqrt{x-1}$+$\sqrt{20-4x}$的最大值.
解答 (1)證明:∵(a2+b2)(c2+d2)-(ac+bd)2 =a2d2-2adbc+b2c2=(ad-bc)2≥0,
∴(a2+b2)(c2+d2)≥(ac+bd)2成立,當且僅當ad=bc時取得等號.
(2)解:y=3$\sqrt{x-1}$+$\sqrt{20-4x}$=3$\sqrt{x-1}$+2$\sqrt{5-x}$≤$\sqrt{(9+4)(x-1+5-x)}$=2$\sqrt{13}$,
∴函數(shù)y=3$\sqrt{x-1}$+$\sqrt{20-4x}$的最大值為2$\sqrt{13}$.
點評 本題主要考查用作差比較法證明不等式,柯西不等式的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 90° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
組別(i) | 睡眠時間 | 組中值(Zi) | 頻數(shù) | 頻率(Pi) |
1 | [4.5,5.5) | 5 | 2 | 0.04 |
2 | [5.5,6.5) | 6 | 6 | 0.12 |
3 | [6.5,7.5) | 7 | 20 | 0.40 |
4 | [7.5,8.5) | 8 | 18 | 0.36 |
5 | [8.5,9.5) | 9 | 3 | 0.06 |
6 | [9.5,10.5) | 10 | 1 | 0.02 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{1}{3}$) | B. | [$\frac{1}{3}$,$\frac{1}{e}$) | C. | ($\frac{1}{e}$,$\frac{4}{3}$] | D. | (-∞,0]∪[$\frac{4}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com