分析 利用兩個(gè)向量共線的性質(zhì),誘導(dǎo)公式,求得sin($\frac{π}{6}$-α)的值,再利用二倍角公式求得 $cos(\frac{π}{3}-2α)$=1-2${sin}^{2}(\frac{π}{6}-α)$ 的值.
解答 解:∵向量$\overrightarrow a=(cos(\frac{π}{3}+α),1)$,$\overrightarrow b=(1,4)$,$\overrightarrow a$∥$\overrightarrow b$,
∴cos($\frac{π}{3}$+α)•4-1•1=0,求得cos($\frac{π}{3}$+α)=$\frac{1}{4}$,
即sin($\frac{π}{2}$-$\frac{π}{3}$-α)=$\frac{1}{4}$,即sin($\frac{π}{6}$-α)=$\frac{1}{4}$,
∴$cos(\frac{π}{3}-2α)$=1-2${sin}^{2}(\frac{π}{6}-α)$=1-2•$\frac{1}{16}$=$\frac{7}{8}$,
故答案為:$\frac{7}{8}$.
點(diǎn)評(píng) 本題主要考查兩個(gè)向量共線的性質(zhì),誘導(dǎo)公式,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=|2x-1| | B. | f(x)=ex | C. | f(x)=x2+x+1 | D. | f(x)=sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 如果l1∥α,l2∥α,則一定有l(wèi)1∥l2 | B. | 如果l1⊥l2,l2⊥α,則一定有l(wèi)1⊥α | ||
C. | 如果l1⊥l2,l2⊥α,則一定有l(wèi)1∥α | D. | 如果l1⊥α,l2∥α,則一定有l(wèi)1⊥l2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+$\sqrt{3}$ | B. | 5+2$\sqrt{6}$ | C. | 8+$\sqrt{15}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{5}$ | C. | 4 | D. | 5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com