分析 (1)a=1時(shí),求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍結(jié)合分母為正,分子結(jié)合二次函數(shù)圖象及性質(zhì),找出函數(shù)值為正值、負(fù)值的區(qū)間,得出函數(shù)f(x)的單調(diào)區(qū)間.
解答 解:(1)a=1時(shí),f(x)=$\frac{1}{2}$x2-2lnx-x,
f′(x)=x-$\frac{2}{x}$-1=$\frac{(x-2)(x+1)}{x}$,
令f′(x)>0,解得:x>2,
令f′(x)<0,解得:x<2,
∴f(x)在[1,2]遞減,在(2,e]遞增,
∴f(x)的最小值是f(2)=-2ln2,
而f(1)=-$\frac{1}{2}$<f(e)=$\frac{1}{2}$e2-e,
故f(x)在[1,e]的最大值是f(e)=$\frac{1}{2}$e2-e;
(2)a≤0時(shí),f′(x)=$\frac{(x-2)(x+a)}{x}$,
∴①當(dāng)-2<a≤0時(shí),
若x∈(0,-a),f′(x)>0,f(x)為增函數(shù),
x∈(-a,2),f′(x)<0,f(x)為減函數(shù),
x∈(2,+∞),f′(x)>0,f(x)為增函數(shù),
②當(dāng)a=-2時(shí),x∈(0,+∞),f′(x)>0,f(x)為增函數(shù),
③當(dāng)a<-2時(shí),x∈(0,2),f′(x)>0,f(x)為增函數(shù),
x∈(2,-a),f′(x)<0,f(x)為減函數(shù),
x∈(-a,+∞),f′(x)>0,f(x)為增函數(shù).
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{8}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i+2 | B. | i-2 | C. | -2-i | D. | 2-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c<b<a | B. | c<a<b | C. | a<c<b | D. | a<b<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com