14.已知函數(shù)f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在[1,e]上的最小值和最大值;
(2)當(dāng)a≤0時(shí),討論函數(shù)f(x)的單調(diào)性.

分析 (1)a=1時(shí),求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍結(jié)合分母為正,分子結(jié)合二次函數(shù)圖象及性質(zhì),找出函數(shù)值為正值、負(fù)值的區(qū)間,得出函數(shù)f(x)的單調(diào)區(qū)間.

解答 解:(1)a=1時(shí),f(x)=$\frac{1}{2}$x2-2lnx-x,
f′(x)=x-$\frac{2}{x}$-1=$\frac{(x-2)(x+1)}{x}$,
令f′(x)>0,解得:x>2,
令f′(x)<0,解得:x<2,
∴f(x)在[1,2]遞減,在(2,e]遞增,
∴f(x)的最小值是f(2)=-2ln2,
而f(1)=-$\frac{1}{2}$<f(e)=$\frac{1}{2}$e2-e,
故f(x)在[1,e]的最大值是f(e)=$\frac{1}{2}$e2-e;
(2)a≤0時(shí),f′(x)=$\frac{(x-2)(x+a)}{x}$,
∴①當(dāng)-2<a≤0時(shí),
若x∈(0,-a),f′(x)>0,f(x)為增函數(shù),
x∈(-a,2),f′(x)<0,f(x)為減函數(shù),
x∈(2,+∞),f′(x)>0,f(x)為增函數(shù),
②當(dāng)a=-2時(shí),x∈(0,+∞),f′(x)>0,f(x)為增函數(shù),
③當(dāng)a<-2時(shí),x∈(0,2),f′(x)>0,f(x)為增函數(shù),
x∈(2,-a),f′(x)<0,f(x)為減函數(shù),
x∈(-a,+∞),f′(x)>0,f(x)為增函數(shù).

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在平面區(qū)域M={(x,y)|$\left\{\begin{array}{l}{y≥x}\\{x≥0}\\{x+y≤2}\end{array}\right.$}內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P在圓x2+y2=2內(nèi)部的概率( 。
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)集合A={y|y=x2-2x+1,0≤x≤3},集合B={x|x2-(2m-1)x+m(m-1)≤0}.已知命題p:x∈A,命題q:x∈B,且命題p是命題q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若i是虛數(shù)單位,與復(fù)數(shù)$\frac{5}{i-2}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于實(shí)軸對(duì)稱的點(diǎn)對(duì)應(yīng)的復(fù)數(shù)是( 。
A.i+2B.i-2C.-2-iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)是定義在R上的奇函數(shù),其導(dǎo)函數(shù)為f'(x),且x<0時(shí)2f(x)+xf'(x)<0恒成立,則a=f(1),b=2014f($\sqrt{2014}$),c=2015f($\sqrt{2015}$)的大小關(guān)系為( 。
A.c<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若全集U=R,函數(shù)y=$\sqrt{x-2}$+$\sqrt{x+1}$的定義域?yàn)锳,函數(shù)y=$\sqrt{-{x^2}+2x+8}$的值域?yàn)锽.
(I)求集合A,B;   
(II)求(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.$\frac{\sqrt{3}tan12°-3}{sin12°(4cos{\;}^{2}12°-2)}$=-4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.定義在D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,存在常數(shù)M≥0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的一個(gè)上界.已知函數(shù)f(x)=1+a($\frac{1}{2}$)x+($\frac{1}{4}$)x,若函數(shù)f(x)在[-2,1]上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an},{bn},其中{an}為等差數(shù),列,b1=a1=2,且a3為a2與a5-1的等比中項(xiàng),
(1)求an;
(2)對(duì)$n∈{N^*},{b_{n+1}}-{b_n}={3^n}{a_n}$,求bn(用n表示).

查看答案和解析>>

同步練習(xí)冊答案